PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force

被引:65
作者
Yang, Shuang-Yan [1 ]
Wei, Fu-Lan [1 ]
Hu, Li-Hua [1 ]
Wang, Chun-Ling [1 ]
机构
[1] Shandong Univ, Sch Stomatol, Shandong Prov Key Lab Oral Biomed, Dept Orthodont, Jinan 250012, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
PERK-eIF2; alpha-ATF4; Endoplasmic reticulum stress; Osteodifferentiation; Human periodontal ligament cells; Mechanical force; GENE-EXPRESSION; OSTEOGENIC DIFFERENTIATION; TRANSCRIPTION FACTOR; CENTRIFUGAL FORCE; MESSENGER-RNA; ATF4; TRANSLATION; BINDING; PERK; PROLIFERATION;
D O I
10.1016/j.cellsig.2016.04.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To prevent excess accumulation of unfolded proteins in endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are known as the endoplasmic reticulum stress (ERS) response. Protein kinase R like endoplasmic reticulum kinase (PERK) is a major transducer of the ERS response and it directly phosphorylate a -subunit of eukaryotic initiation factor 2 (eIF2a), resulting in translational attenuation. Phosphorylated eIF2a specifically promoted the translation of the activating transcription factor 4 (ATF4). ATF4 is a known important transcription factor which plays a pivotal role in osteoblast differentiation and bone formation. Furthermore, ATF4 is a downstream target of PERK. Studies have shown that PERK-eIF2a-ATF4 signal pathway mediated by ERS was involved in osteoblastic differentiation of osteoblasts. We have known that orthodontic tooth movement is a process of periodontal ligament cells (PDLCs) osteodifferentiation and alveolar bone remodeling under mechanical force. However, the involvement of PERK-eIF2a-ATF4 signal pathway mediated by ERS in osteogenic differentiation of PDLCs under mechanical force has not been unclear. In our study, we applied the cyclic mechanical force at 10% elongation with 0.5 Hz to mimic occlusal force, and explored whether PERK-eIF2a-ATF4 signaling pathway mediated by ERS involved in osteogenic differentiation of PDLCs under mechanical force. Firstly, cyclic mechanical force will induce ERS and intensify several osteoblast marker genes (ATF4, OCN, and BSP). Next, we found that PERK overexpressionIncreased eIF2a phosphorylation and expression of ATF4, furthermore induced BSP, OCN expression, thus it will promote osteodifferentiation of hPDLCs; mechanical force could promote this effect. However, PERK-/- cells showed the opposite changes, which will inhibit osteodifferentiation of hPDLCs. Taken together, our study proved that PERK-eIF2a-ATF4 signaling pathway mediated by ERS involved in osteoblast differentiation of PDLCs under cyclic mechanical force. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:880 / 886
页数:7
相关论文
共 50 条
  • [41] EIF2α/ATF4 pathway enhances proliferation of mesangial cell via cyclin D1 during endoplasmic reticulum stress in IgA nephropathy
    Lan, Zhixin
    Zhao, Lu
    Peng, Liang
    Wan, Lili
    Liu, Di
    Tang, Chengyuan
    Chen, Guochun
    Liu, Yu
    Liu, Hong
    [J]. CLINICAL IMMUNOLOGY, 2023, 257
  • [42] ROS-mediated PERK-eIF2α-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling
    Liu, Chunyan
    Zhang, Aihua
    [J]. ENVIRONMENTAL TOXICOLOGY, 2020, 35 (10) : 1100 - 1113
  • [43] The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress
    He, Fei
    Gu, Lina
    Cai, Nan
    Ni, Jun
    Liu, Yong
    Zhang, Quan
    Wu, Chao
    [J]. INFLAMMATION RESEARCH, 2022, 71 (10-11) : 1245 - 1260
  • [44] The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress
    Fei He
    Lina Gu
    Nan Cai
    Jun Ni
    Yong Liu
    Quan Zhang
    Chao Wu
    [J]. Inflammation Research, 2022, 71 : 1245 - 1260
  • [45] Endoplasmic reticulum stress participates in apoptosis of HeLa cells exposed to TPHP and OH-TPHP via the eIF2α-ATF4/ATF3-CHOP-DR5/P53 signaling pathway
    An, Jing
    Du, Chenyang
    Xue, Wanlei
    Huang, Jin
    Zhong, Yufang
    Ren, Guofa
    Shang, Yu
    Xu, Bingye
    [J]. TOXICOLOGY RESEARCH, 2023, 12 (06) : 1159 - 1170
  • [46] Inhibition of TRPA1 Ameliorates Periodontitis by Reducing Periodontal Ligament Cell Oxidative Stress and Apoptosis via PERK/eIF2α/ATF-4/CHOP Signal Pathway
    Liu, Qian
    Guo, Shujuan
    Huang, Yanli
    Wei, Xiuqun
    Liu, Li
    Huo, Fangjun
    Huang, Ping
    Wu, Yafei
    Tian, Weidong
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022
  • [47] NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting endoplasmic reticulum stress via inactivating PERK/ ATF4 pathway
    Yu, Na
    Wu, Lingyuan
    Xing, Xin
    [J]. TISSUE & CELL, 2025, 92
  • [48] 7-Acetylsinumaximol B Induces Apoptosis and Autophagy in Human Gastric Carcinoma Cells through Mitochondria Dysfunction and Activation of the PERK/eIF2α/ATF4/CHOP Signaling Pathway
    Tsai, Tsung-Chang
    Lai, Kuei-Hung
    Su, Jui-Hsin
    Wu, Yu-Jen
    Sheu, Jyh-Horng
    [J]. MARINE DRUGS, 2018, 16 (04):
  • [49] Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure
    Liu, Xudan
    Chen, Yao
    Wang, Huanhuan
    Wei, Yuting
    Yuan, Ye
    Zhou, Qianqian
    Fang, Fang
    Shi, Sainan
    Jiang, Xiaojing
    Dong, Yinqiao
    Li, Xin
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2021, 417
  • [50] Alpha-lipoic acid protects against cadmium-induced neuronal injury by inhibiting the endoplasmic reticulum stress eIF2α-ATF4 pathway in rat cortical neurons in vitro and in vivo
    Yuan, Yan
    Yang, Jinlong
    Chen, Jie
    Zhao, Shiwen
    Wang, Tao
    Zou, Hui
    Wang, Yi
    Gu, Jianhong
    Liu, Xuezhong
    Bian, Jianchun
    Liu, Zongping
    [J]. TOXICOLOGY, 2019, 414 : 1 - 13