Cohen-Macaulayness of a class of graphs versus the class of their complements

被引:4
作者
Ashitha, T. [1 ]
Asir, T. [1 ]
Hoang, D. T. [2 ]
Pournaki, M. R. [3 ]
机构
[1] Madurai Kamaraj Univ, Dept Math DDE, Madurai 625021, Tamil Nadu, India
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, Vietnam
[3] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
关键词
Well-covered graph; Cohen-Macaulay graph; Vertex-decomposable graph; Gorenstein graph;
D O I
10.1016/j.disc.2021.112525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 2 be an integer. The graph G(n) is obtained by letting all the elements of {0, ..., n - 1} to be the vertices and defining distinct vertices x and y to be adjacent if and only if gcd(x + y, n) = 1. In this paper, well-coveredness, Cohen-Macaulayness, vertex-decomposability and Gorensteinness of these graphs and their complements are characterized. These characterizations provide large classes of Cohen-Macaulay and non Cohen-Macaulay graphs. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 9 条
[1]   REGULAR SUBGRAPHS OF ALMOST REGULAR GRAPHS [J].
ALON, N ;
FRIEDLAND, S ;
KALAI, G .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) :79-91
[2]  
Bruns W., 1993, COHEN MACAULAY RINGS
[3]  
Grimaldi R.P., 1990, Congr. Numer., V71, P95
[4]   Distributive lattices, bipartite graphs and Alexander duality [J].
Herzog, J ;
Hibi, T .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (03) :289-302
[5]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[6]   Cohen-Macaulayness of two classes of circulant graphs [J].
Hoang, D. T. ;
Maimani, H. R. ;
Mousivand, A. ;
Pournaki, M. R. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) :805-827
[7]  
Stanley R.P., 1996, COMBINATORICS COMMUT, V41
[8]  
Villarreal RH., 2015, MONOMIAL ALGEBRAS MO
[9]  
West D.B., 2018, Introduction to Graph Theory, V2nd