On generalized Csiszar-Kullback inequalities

被引:64
作者
Unterreiter, A [1 ]
Arnold, A
Markowich, P
Toscani, G
机构
[1] Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
[2] Univ Saarlandes, Fachbereich Math, D-66123 Saarbrucken, Germany
[3] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2000年 / 131卷 / 03期
关键词
generalized Csiszar-Kullback inequalities; relative (convex) entropies;
D O I
10.1007/s006050070013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical Csiszar-Kullback inequalities bound the L-1-distance of two probability densities in terms of their relative (convex) entropies. Here we generalize such inequalities to not functions. Also, we analyse the optimality of the necessarily normalized and possibly non-positive L-1 derived Csiszar-Kullback type inequalities and show that they are in many important cases significantly sharper than the classical ones tin terms of the functional dependence of the L-1 bound on the relative entropy). Moreover our construction of these bounds is rather elementary. 2000 Mathematics: Subject Classification: 28A33, 28D20, 52A10, 52A40, 94A17, 46E30.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 15 条
[1]  
[Anonymous], STUDIA SCI MATH HUNG
[2]  
ARNOLD A, 1999, IN PRESS COMM PDE
[3]  
BARNDORFFNIELSE.O, 1964, Z WAHRSCH VERW GEB, V2, P369
[4]  
Bergh J., 1976, INTERPOLATION SPACES
[5]  
BLACHMAN NM, 1965, IEEE T INFORM THEORY, V2, P267
[6]   A NOTE ON AN INEQUALITY INVOLVING THE NORMAL-DISTRIBUTION [J].
CHERNOFF, H .
ANNALS OF PROBABILITY, 1981, 9 (03) :533-535
[7]  
Csiszar I, 1967, STUD SCI MATH HUNG, V2, P299
[8]  
Csiszar I., 1964, Magyar Tud. Akad. Mat. Kutat'o Int. K"ozl., V8, P85
[9]  
Ekeland I., 1974, Analyse Convexe et Problemes Variationnels
[10]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86