Independent component analysis: Mining microarray data for fundamental human gene expression modules

被引:65
作者
Engreitz, Jesse M. [1 ]
Daigle, Bernie J., Jr. [2 ]
Marshall, Jonathan J. [1 ]
Altman, Russ B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
关键词
Microarrays; Independent component analysis; Data mining; Parthenolide; Gene modules; SESQUITERPENE LACTONE PARTHENOLIDE; NF-KAPPA-B; ACUTE MYELOGENOUS LEUKEMIA; ACUTE MYELOID-LEUKEMIA; TRANSCRIPTION FACTOR; STEM-CELLS; PROSTATE-CANCER; HUMAN GENOME; APOPTOSIS; PROFILES;
D O I
10.1016/j.jbi.2010.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As public microarray repositories rapidly accumulate gene expression data, these resources contain increasingly valuable information about cellular processes in human biology This presents a unique opportunity for intelligent data mining methods to extract information about the transcriptional modules underlying these biological processes Modeling cellular gene expression as a combination of functional modules, we use Independent component analysis (ICA) to derive 423 fundamental components of human biology from a 9395-array compendium of heterogeneous expression data Annotation using the Gene Ontology (GO) suggests that while sonic of these components represent known biological modules, others may describe biology not well characterized by existing manually-curated ontologies In order to understand the biological functions represented by these modules, we investigate the mechanism of the preclinical anti-cancer drug parthenolide (PTL) by analyzing the differential expression of our fundamental components Our method correctly identifies known pathways and predicts that N-glycan biosynthesis and T-cell receptor signaling may contribute to PTL response The fundamental gene modules we describe have the potential to provide pathway-level insight into new gene expression datasets (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:932 / 944
页数:13
相关论文
共 50 条
[41]   Independent arrays or independent time courses for gene expression time series data analysis [J].
Kim, Sookjeong ;
Kim, Jong Kyoung ;
Choi, Seungjin .
NEUROCOMPUTING, 2008, 71 (10-12) :2377-2387
[42]   Early gene expression in wounded human keratinocytes revealed by DNA microarray analysis [J].
Dayem, MA ;
Moreilhon, C ;
Turchi, L ;
Magnone, V ;
Christen, R ;
Ponzio, G ;
Barbry, P .
COMPARATIVE AND FUNCTIONAL GENOMICS, 2003, 4 (01) :47-55
[43]   A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes [J].
Mazzatti, Dawn ;
Lim, Fei-Ling ;
O'Hara, Adrian ;
Wood, I. Stuart ;
Trayhurn, Paul .
ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2012, 118 (03) :112-120
[44]   Gene expression during the implantation window microarray analysis of human endometrial samples [J].
Schmidt, A ;
Groth, P ;
Haendler, B ;
Hess-Stumpp, H ;
Krätzschmar, J ;
Seidel, H ;
Thaele, M ;
Weiss, B .
NEW MECHANISMS FOR TISSUE-SELECTIVE ESTROGEN-FREE CONTRACEPTION, 2005, 52 :139-157
[45]   Assessing the Evolution of Gene Expression Using Microarray Data [J].
Woody, Owen Z. ;
Doxey, Andrew C. ;
McConkey, Brendan J. .
EVOLUTIONARY BIOINFORMATICS, 2008, 4 :139-152
[46]   Getting Started in Gene Expression Microarray Analysis [J].
Slonim, Donna K. ;
Yanai, Itai .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (10)
[47]   A Weighted Principal Component Analysis and Its Application to Gene Expression Data [J].
da Costa, Joaquim F. Pinto ;
Alonso, Hugo ;
Roque, Luis .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (01) :246-252
[48]   Data-driven human transcriptomic module determined by independent component analysis [J].
Zhou, Weizhuang ;
Altman, Russ B. .
BMC BIOINFORMATICS, 2018, 19
[49]   Microarray analysis of differential gene expression in androgen independent prostate cancer using a metastatic human prostate cancer cell line model [J].
Balaji, KC ;
Rao, PS ;
Smith, DJ ;
Louis, S ;
Smith, LM ;
Sherman, S ;
Bacich, D ;
O'Keefe, D .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2004, 22 (04) :313-320
[50]   A note on joint versus gene-specific mixed model analysis of microarray gene expression data [J].
Hoeschele, I ;
Li, H .
BIOSTATISTICS, 2005, 6 (02) :183-186