Independent component analysis: Mining microarray data for fundamental human gene expression modules

被引:65
作者
Engreitz, Jesse M. [1 ]
Daigle, Bernie J., Jr. [2 ]
Marshall, Jonathan J. [1 ]
Altman, Russ B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
关键词
Microarrays; Independent component analysis; Data mining; Parthenolide; Gene modules; SESQUITERPENE LACTONE PARTHENOLIDE; NF-KAPPA-B; ACUTE MYELOGENOUS LEUKEMIA; ACUTE MYELOID-LEUKEMIA; TRANSCRIPTION FACTOR; STEM-CELLS; PROSTATE-CANCER; HUMAN GENOME; APOPTOSIS; PROFILES;
D O I
10.1016/j.jbi.2010.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As public microarray repositories rapidly accumulate gene expression data, these resources contain increasingly valuable information about cellular processes in human biology This presents a unique opportunity for intelligent data mining methods to extract information about the transcriptional modules underlying these biological processes Modeling cellular gene expression as a combination of functional modules, we use Independent component analysis (ICA) to derive 423 fundamental components of human biology from a 9395-array compendium of heterogeneous expression data Annotation using the Gene Ontology (GO) suggests that while sonic of these components represent known biological modules, others may describe biology not well characterized by existing manually-curated ontologies In order to understand the biological functions represented by these modules, we investigate the mechanism of the preclinical anti-cancer drug parthenolide (PTL) by analyzing the differential expression of our fundamental components Our method correctly identifies known pathways and predicts that N-glycan biosynthesis and T-cell receptor signaling may contribute to PTL response The fundamental gene modules we describe have the potential to provide pathway-level insight into new gene expression datasets (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:932 / 944
页数:13
相关论文
共 50 条
[21]   Microarray data mining using gene ontology [J].
Li, SH ;
Becich, MJ ;
Gilbertson, J .
MEDINFO 2004: PROCEEDINGS OF THE 11TH WORLD CONGRESS ON MEDICAL INFORMATICS, PT 1 AND 2, 2004, 107 :778-782
[22]   Microarray Data Analysis and Mining Tools [J].
Selvaraj, Saravanakumar ;
Natarajan, Jeyakumar .
BIOINFORMATION, 2011, 6 (03) :95-99
[23]   Separation and Identification of Environmental Noise Signals using Independent Component Analysis and Data Mining Techniques [J].
Lopez P, Ma Guadalupe ;
Sanchez F, Luis P. ;
Molina Lozano, Heron ;
Oliva Moreno, L. Noe .
2011 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2011), 2011, :83-88
[24]   Integrating gene and protein expression data: pattern analysis and profile mining [J].
Cox, B ;
Kislinger, T ;
Emili, A .
METHODS, 2005, 35 (03) :303-314
[25]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, David B. ;
Gadbury, Gary L. ;
Heo, Moonseong ;
Fernández, José R. ;
Lee, Cheol-Koo ;
Prolla, Tomas A. ;
Weindruch, Richard .
Computational Statistics and Data Analysis, 2002, 38 (05) :1-20
[26]   Mining Fuzzy Association Rules from microarray gene expression data for leukemia classification [J].
He, Yuanchen ;
Tang, Yuchun ;
Zhang, Yan-Qing ;
Sunderraman, Rajshekhar .
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, :461-+
[27]   Visualization of microarray gene expression data [J].
Prasad, Tangirala Venkateswara ;
Ahson, Syed Ismail .
BIOINFORMATION, 2006, 1 (04) :141-145
[28]   Gene expression in human alcoholism: Microarray analysis of frontal cortex [J].
Lewohl, JM ;
Wang, L ;
Miles, MF ;
Zhang, L ;
Dodd, PR ;
Harris, RA .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2000, 24 (12) :1873-1882
[29]   Microarray sample clustering using independent component analysis [J].
Zhu, Lei ;
Tang, Chun .
PROCEEDINGS OF THE 2006 IEEE/SMC INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING, 2006, :112-+
[30]   Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data [J].
Mi Hyeon Kim ;
Hwa Jeong Seo ;
Je-Gun Joung ;
Ju Han Kim .
BMC Bioinformatics, 12