Independent component analysis: Mining microarray data for fundamental human gene expression modules

被引:65
作者
Engreitz, Jesse M. [1 ]
Daigle, Bernie J., Jr. [2 ]
Marshall, Jonathan J. [1 ]
Altman, Russ B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
关键词
Microarrays; Independent component analysis; Data mining; Parthenolide; Gene modules; SESQUITERPENE LACTONE PARTHENOLIDE; NF-KAPPA-B; ACUTE MYELOGENOUS LEUKEMIA; ACUTE MYELOID-LEUKEMIA; TRANSCRIPTION FACTOR; STEM-CELLS; PROSTATE-CANCER; HUMAN GENOME; APOPTOSIS; PROFILES;
D O I
10.1016/j.jbi.2010.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As public microarray repositories rapidly accumulate gene expression data, these resources contain increasingly valuable information about cellular processes in human biology This presents a unique opportunity for intelligent data mining methods to extract information about the transcriptional modules underlying these biological processes Modeling cellular gene expression as a combination of functional modules, we use Independent component analysis (ICA) to derive 423 fundamental components of human biology from a 9395-array compendium of heterogeneous expression data Annotation using the Gene Ontology (GO) suggests that while sonic of these components represent known biological modules, others may describe biology not well characterized by existing manually-curated ontologies In order to understand the biological functions represented by these modules, we investigate the mechanism of the preclinical anti-cancer drug parthenolide (PTL) by analyzing the differential expression of our fundamental components Our method correctly identifies known pathways and predicts that N-glycan biosynthesis and T-cell receptor signaling may contribute to PTL response The fundamental gene modules we describe have the potential to provide pathway-level insight into new gene expression datasets (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:932 / 944
页数:13
相关论文
共 50 条
[1]   Independent component analysis of Alzheimer's DNA microarray gene expression data [J].
Kong, Wei ;
Mou, Xiaoyang ;
Liu, Qingzhong ;
Chen, Zhongxue ;
Vanderburg, Charles R. ;
Rogers, Jack T. ;
Huang, Xudong .
MOLECULAR NEURODEGENERATION, 2009, 4
[2]   Independent component analysis of Alzheimer's DNA microarray gene expression data [J].
Wei Kong ;
Xiaoyang Mou ;
Qingzhong Liu ;
Zhongxue Chen ;
Charles R Vanderburg ;
Jack T Rogers ;
Xudong Huang .
Molecular Neurodegeneration, 4
[3]   Study DNA microarray gene expression data of Alzheimer's disease by independent component analysis [J].
Kong, Wei ;
Mou, Xiaoyang ;
Bin Yang .
2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, :44-+
[4]   A novel dimensionality reduction technique based on independent component analysis for modeling microarray gene expression data [J].
Liu, H ;
Kustra, R ;
Zhang, J .
IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, :1133-1139
[5]   Data mining with independent component analysis [J].
Wang, Fasong ;
Li, Hongwei ;
Li, Rui .
WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, :6043-+
[6]   Data-driven human transcriptomic modules determined by independent component analysis [J].
Weizhuang Zhou ;
Russ B. Altman .
BMC Bioinformatics, 19
[7]   MAPS: MicroArray processing software for management, data mining and visualization of gene expression data [J].
Lambros, Skarlas ;
Dimitra, Tsavachidou ;
Sanoudou, Despoina ;
Spiridon, Likothanassis ;
Haralambos, Kalofonos ;
Weber, Barbara L. .
RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B :1069-+
[8]   Analysis of microarray gene expression data [J].
Pham, Tuan D. ;
Wells, Christine ;
Crane, Denis I. .
CURRENT BIOINFORMATICS, 2006, 1 (01) :37-53
[9]   Gene Expression Data Classification Using Consensus Independent Component Analysis [J].
ChunHou Zheng DeShuang Huang XiangZhen Kong and XingMing Zhao College of Information and Communication Technology Qufu Normal University Rizhao China Intelligent Computing Lab Institute of Intelligent Machines Chinese Academy of Sciences Hefei China .
Genomics Proteomics & Bioinformatics, 2008, (02) :74-82
[10]   Independent component analysis of microarray data in the study of endometrial cancer [J].
Saidi, SA ;
Holland, CM ;
Kreil, DP ;
MacKay, DJC ;
Charnock-Jones, DS ;
Print, CG ;
Smith, SK .
ONCOGENE, 2004, 23 (39) :6677-6683