Independent component analysis: Mining microarray data for fundamental human gene expression modules

被引:65
作者
Engreitz, Jesse M. [1 ]
Daigle, Bernie J., Jr. [2 ]
Marshall, Jonathan J. [1 ]
Altman, Russ B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
关键词
Microarrays; Independent component analysis; Data mining; Parthenolide; Gene modules; SESQUITERPENE LACTONE PARTHENOLIDE; NF-KAPPA-B; ACUTE MYELOGENOUS LEUKEMIA; ACUTE MYELOID-LEUKEMIA; TRANSCRIPTION FACTOR; STEM-CELLS; PROSTATE-CANCER; HUMAN GENOME; APOPTOSIS; PROFILES;
D O I
10.1016/j.jbi.2010.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As public microarray repositories rapidly accumulate gene expression data, these resources contain increasingly valuable information about cellular processes in human biology This presents a unique opportunity for intelligent data mining methods to extract information about the transcriptional modules underlying these biological processes Modeling cellular gene expression as a combination of functional modules, we use Independent component analysis (ICA) to derive 423 fundamental components of human biology from a 9395-array compendium of heterogeneous expression data Annotation using the Gene Ontology (GO) suggests that while sonic of these components represent known biological modules, others may describe biology not well characterized by existing manually-curated ontologies In order to understand the biological functions represented by these modules, we investigate the mechanism of the preclinical anti-cancer drug parthenolide (PTL) by analyzing the differential expression of our fundamental components Our method correctly identifies known pathways and predicts that N-glycan biosynthesis and T-cell receptor signaling may contribute to PTL response The fundamental gene modules we describe have the potential to provide pathway-level insight into new gene expression datasets (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:932 / 944
页数:13
相关论文
共 94 条
[1]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Parthenolide induces apoptosis in glioblastomas without affecting NF-κB [J].
Anderson, Krystal N. ;
Bejcek, Bruce E. .
JOURNAL OF PHARMACOLOGICAL SCIENCES, 2008, 106 (02) :318-320
[4]  
[Anonymous], 2005, FINDING GROUPS DATA, DOI DOI 10.1002/9780470316801
[5]   Clustering of gene expression data using a local shape-based similarity measure [J].
Balasubramaniyan, R ;
Hüllermeier, E ;
Weskamp, N ;
Kämper, J .
BIOINFORMATICS, 2005, 21 (07) :1069-1077
[6]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[7]   Mechanisms of disease - Nuclear factor-kappa b - A pivotal transcription factor in chronic inflammatory diseases [J].
Barnes, PJ ;
Larin, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1997, 336 (15) :1066-1071
[8]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[9]   An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML [J].
Bullinger, Lars ;
Doehner, Konstanze ;
Kranz, Raphael ;
Stirner, Christoph ;
Froeling, Stefan ;
Scholl, Claudia ;
Kim, Young H. ;
Schlenk, Richard F. ;
Tibshirani, Robert ;
Doehner, Hartmut ;
Pollack, Jonathan R. .
BLOOD, 2008, 111 (09) :4490-4495
[10]   Model validation for gene selection and regulation maps [J].
Capobianco, Enrico .
FUNCTIONAL & INTEGRATIVE GENOMICS, 2008, 8 (02) :87-99