Some theorems of Korovkin type

被引:1
作者
Hachiro, T
Okayasu, T
机构
[1] Sendai Shirayuri Gakuen High Sch, Izumi Ku, Sendai, Miyagi 9813205, Japan
[2] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
关键词
Korovkin type approximation; function space; linear contraction;
D O I
10.4064/sm155-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C-R(X)) of all complex-valued (resp., real-valued) continuous functions on X, S subset of M a complex (resp., real) function space on X, {phi(n)} a sequence of unital linear contractions from M into C(Y) (resp., CR(Y)), and OD a linear isometry from M into C(Y) (resp., CR(Y)). We show, under the assumption that Pi(N) subset of Pi(T), where Pi(N) is the Choquet boundary for N = Span(boolean OR1less than or equal tonless than or equal toinfinity N-n), N-n = phi(n)(M) (n = 1, 2,..., infinity), and Pi(T) the Choquet boundary for T = phi(infinity)(S), that {phi(n)(f)} converges pointwise to phi(infinity)(f) for any f is an element of M provided {phi(n)(f)} converges pointwise to phi(infinity)(f) for any f is an element of S; that {phi(n)(f)} converges uniformly on any compact subset Of Pi(N) to phi(infinity)(f) for any f is an element of M provided {phi(n)(f)} converges uniformly to phi(infinity)(f) for any f is an element of S; and that, in the case where S is a function algebra, {phi(n)} norm converges to phi(infinity). on M provided {phi(n)(f)} norm converges to phi(infinity) on S. The proofs are in the spirit of the original one for the theorem of Korovkin.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [21] Multiplication Operators on Some Morrey Spaces
    Dutta, Hemen
    Das, Shilpa
    FILOMAT, 2019, 33 (16) : 5051 - 5059
  • [22] Some ultrabornological normed function spaces
    Alain Bernard
    Stuart J. Sidney
    Archiv der Mathematik, 1997, 69 : 409 - 417
  • [23] Topological properties of some function spaces
    Gabriyelyan, Saak
    Osipov, Alexander, V
    TOPOLOGY AND ITS APPLICATIONS, 2020, 279
  • [24] Exponential separability is preserved by some products
    Tkachuk, Vladimir V.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2022, 63 (03): : 385 - 385
  • [25] Some properties of anisotropic Sobolev spaces
    P. Secchi
    Archiv der Mathematik, 2000, 75 : 207 - 216
  • [26] On Some Results Related to Sober Spaces
    Li, Qingguo
    Jin, Mengjie
    Miao, Hualin
    Chen, Siheng
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1477 - 1490
  • [27] On Some Results Related to Sober Spaces
    Qingguo Li
    Mengjie Jin
    Hualin Miao
    Siheng Chen
    Acta Mathematica Scientia, 2023, 43 : 1477 - 1490
  • [28] Some applications of exponentially separable spaces
    Tkachuk, Vladimir V.
    QUAESTIONES MATHEMATICAE, 2020, 43 (10) : 1391 - 1403
  • [29] Baire property of some function spaces
    A. V. Osipov
    E. G. Pytkeev
    Acta Mathematica Hungarica, 2022, 168 : 246 - 259
  • [30] BAIRE PROPERTY OF SOME FUNCTION SPACES
    Osipov, A., V
    Pytkeev, E. G.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 246 - 259