Some theorems of Korovkin type

被引:1
|
作者
Hachiro, T
Okayasu, T
机构
[1] Sendai Shirayuri Gakuen High Sch, Izumi Ku, Sendai, Miyagi 9813205, Japan
[2] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
关键词
Korovkin type approximation; function space; linear contraction;
D O I
10.4064/sm155-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C-R(X)) of all complex-valued (resp., real-valued) continuous functions on X, S subset of M a complex (resp., real) function space on X, {phi(n)} a sequence of unital linear contractions from M into C(Y) (resp., CR(Y)), and OD a linear isometry from M into C(Y) (resp., CR(Y)). We show, under the assumption that Pi(N) subset of Pi(T), where Pi(N) is the Choquet boundary for N = Span(boolean OR1less than or equal tonless than or equal toinfinity N-n), N-n = phi(n)(M) (n = 1, 2,..., infinity), and Pi(T) the Choquet boundary for T = phi(infinity)(S), that {phi(n)(f)} converges pointwise to phi(infinity)(f) for any f is an element of M provided {phi(n)(f)} converges pointwise to phi(infinity)(f) for any f is an element of S; that {phi(n)(f)} converges uniformly on any compact subset Of Pi(N) to phi(infinity)(f) for any f is an element of M provided {phi(n)(f)} converges uniformly to phi(infinity)(f) for any f is an element of S; and that, in the case where S is a function algebra, {phi(n)} norm converges to phi(infinity). on M provided {phi(n)(f)} norm converges to phi(infinity) on S. The proofs are in the spirit of the original one for the theorem of Korovkin.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [1] Approximations of the Korovkin type in Banach lattices
    Halina Wiśniewska
    Marek Wójtowicz
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109 : 125 - 134
  • [2] Approximations of the Korovkin type in Banach lattices
    Wisniewska, Halina
    Wojtowicz, Marek
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) : 125 - 134
  • [3] ABSTRACT KOROVKIN THEOREMS VIA RELATIVE MODULAR CONVERGENCE FOR DOUBLE SEQUENCES OF LINEAR OPERATORS
    Yildiz, Sevda
    Demirci, Kamil
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 561 - 575
  • [4] FUZZY TRIGONOMETRIC KOROVKIN TYPE APPROXIMATION VIA POWER SERIES METHODS OF SUMMABILITY
    Yavuz, Enes
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 123 - 132
  • [5] Korovkin-Type Results on Convergence of Sequences of Positive Linear Maps on Function Spaces
    Hosseini, Maliheh
    Font, Juan J.
    CONSTRUCTIVE APPROXIMATION, 2020, 52 (03) : 423 - 432
  • [6] A Generalised Korovkin Theorem
    Bandyopadhyay, Pradipta
    Roy, Ashoke K.
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (03) : 859 - 869
  • [7] Korovkin-Type Results on Convergence of Sequences of Positive Linear Maps on Function Spaces
    Maliheh Hosseini
    Juan J. Font
    Constructive Approximation, 2020, 52 : 423 - 432
  • [8] Korovkin theory for cone-valued functions
    Walter Roth
    Positivity, 2017, 21 : 449 - 472
  • [9] Korovkin theory for cone-valued functions
    Roth, Walter
    POSITIVITY, 2017, 21 (01) : 449 - 472
  • [10] Statistical weighted (N?, p, q) (E?, 1) A-summability with application to Korovkin?s type approximation theorem
    Srivastava, H. M.
    Aljimi, Ekrem
    Hazarika, Bipan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 178