Fractional Noether's theorem in the Riesz-Caputo sense

被引:117
|
作者
Frederico, Gastao S. F. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Cape Verde, Dept Sci & Technol, Praia, Santiago, Cape Verde
关键词
Calculus of variations; Optimal control; Fractional derivatives; Invariance; Noether's theorem; Leitmann's direct method; COORDINATE TRANSFORMATION METHOD; LEITMANNS DIRECT METHOD; CONSERVATION-LAWS; VARIATIONAL CALCULUS; LINEAR VELOCITIES; OPTIMIZATION; FORMULATION; EXTENSIONS; INTEGRALS; EQUATIONS;
D O I
10.1016/j.amc.2010.01.100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Noether's theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1023 / 1033
页数:11
相关论文
共 50 条
  • [11] A formulation of Noether's theorem for fractional problems of the calculus of variations
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 834 - 846
  • [12] On solutions of nonlinear BVPs with general boundary conditions by using a generalized Riesz-Caputo operator
    Aleem, Maryam
    Ur Rehman, Mujeeb
    Alzabut, Jehad
    Etemad, Sina
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [13] Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems
    G. S. F. Frederico
    M. J. Lazo
    Nonlinear Dynamics, 2016, 85 : 839 - 851
  • [14] On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length
    Blaszczyk, Tomasz
    Bekus, Krzysztof
    Szajek, Krzysztof
    Sumelka, Wojciech
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)
  • [15] Noether's Theorem and Symmetry
    Halder, Amlan K.
    Paliathanasis, Andronikos
    Leach, Peter G. L.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [16] Noether's theorem for fractional variational problems of variable order
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 691 - 701
  • [17] The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo
    Guo, Tian Liang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 115 - 126
  • [18] Noether's theorem on time scales
    Bartosiewicz, Zbigniew
    Torres, Delfim F. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1220 - 1226
  • [19] Fractional Noether Theorem Based on Extended Exponentially Fractional Integral
    Long, Zi-Xuan
    Zhang, Yi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (03) : 841 - 855
  • [20] A Remark on Noether's Theorem of Optimal Control
    Dzenite, Ilona A.
    Torres, Delfim F. M.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 4 (J06): : 88 - 93