Fractional Noether's theorem in the Riesz-Caputo sense

被引:117
|
作者
Frederico, Gastao S. F. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Cape Verde, Dept Sci & Technol, Praia, Santiago, Cape Verde
关键词
Calculus of variations; Optimal control; Fractional derivatives; Invariance; Noether's theorem; Leitmann's direct method; COORDINATE TRANSFORMATION METHOD; LEITMANNS DIRECT METHOD; CONSERVATION-LAWS; VARIATIONAL CALCULUS; LINEAR VELOCITIES; OPTIMIZATION; FORMULATION; EXTENSIONS; INTEGRALS; EQUATIONS;
D O I
10.1016/j.amc.2010.01.100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Noether's theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1023 / 1033
页数:11
相关论文
共 50 条
  • [1] Fractional Noether's Theorem with Classical and Riemann-Liouville Derivatives
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6885 - 6890
  • [2] FRACTIONAL ISOPERIMETRIC NOETHER'S THEOREM IN THE RIEMANN-LIOUVILLE SENSE
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 71 (03) : 291 - 304
  • [3] Fractional variational problems with the Riesz-Caputo derivative
    Almeida, Ricardo
    APPLIED MATHEMATICS LETTERS, 2012, 25 (02) : 142 - 148
  • [4] Noether's theorem of fractional Birkhoffian systems
    Zhang, Hong-Bin
    Chen, Hai-Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 1442 - 1456
  • [5] Investigation of Egyptian Banks' Competition through a Riesz-Caputo Fractional Model
    Omar, Othman A. M.
    Ahmed, Hamdy M.
    Hamdy, Walid
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [6] Fractional Noether's theorem with classical and Caputo derivatives: constants of motion for non-conservative systems
    Frederico, G. S. F.
    Lazo, M. J.
    NONLINEAR DYNAMICS, 2016, 85 (02) : 839 - 851
  • [7] Fractional derivative generalization of Noether's theorem
    Khorshidi, Maryam
    Nadjafikhah, Mehdi
    Jafari, Hossein
    OPEN MATHEMATICS, 2015, 13 : 940 - 947
  • [8] A continuous/discrete fractional Noether's theorem
    Bourdin, Loic
    Cresson, Jacky
    Greff, Isabelle
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) : 878 - 887
  • [9] Noether's theorem of Hamiltonian systems with generalized fractional derivative operators
    Zhang, Hong-Bin
    Chen, Hai-Bo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 107 : 34 - 41
  • [10] Existence of Solutions for Anti-Periodic Fractional Differential Inclusions Involving ψ-Riesz-Caputo Fractional Derivative
    Yang, Dandan
    Bai, Chuanzhi
    MATHEMATICS, 2019, 7 (07)