Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides

被引:143
|
作者
Frank, MM [1 ]
Chabal, YJ
Wilk, GD
机构
[1] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[2] ASM Amer, Phoenix, AZ 85034 USA
[3] Agere Syst, Murray Hill, NJ 07974 USA
关键词
D O I
10.1063/1.1585129
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an in situ infrared spectroscopic study of the interface formation during atomic layer deposition of alternative high-permittivity (high-kappa) gate dielectrics. Layer-by-layer oxide growth may be achieved by alternating pulses of a molecular metal precursor (e.g., trimethylaluminum for aluminum oxide growth) and water vapor. Contrary to common belief, we find that the metal precursor, not the oxidizing agent, is the key factor to control Al2O3 nucleation on hydrogen-terminated silicon. Metal surface species catalyze subsurface Si oxidation. These findings have direct implications on growth conditions to optimize semiconductor-dielectric interfaces. (C) 2003 American Institute of Physics.
引用
收藏
页码:4758 / 4760
页数:3
相关论文
共 50 条
  • [21] Atomic layer deposition of scandium-based oxides
    Nyns, Laura
    Lisoni, Judit G.
    Van den Bosch, Geert
    Van Elshocht, Sven
    Van Houdt, Jan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (02): : 409 - 415
  • [22] Atomic layer deposition reactor for fabrication of metal oxides
    Kolanek, Krzysztof
    Tallarida, Massimo
    Michling, Marcel
    Karavaev, Konstantin
    Schmeisser, Dieter
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 4, 2011, 8 (04): : 1287 - 1292
  • [23] Low interface trap density in scaled bilayer gate oxides on 2D materials via nanofog low temperature atomic layer deposition
    Kwak, Iljo
    Kavrik, Mahmut
    Park, Jun Hong
    Grissom, Larry
    Fruhberger, Bernd
    Wong, Keith T.
    Kang, Sean
    Kummel, Andrew C.
    APPLIED SURFACE SCIENCE, 2019, 463 : 758 - 766
  • [24] In Situ Conductance Analysis of Zinc Oxide Nucleation and Coalescence during Atomic Layer Deposition on Metal Oxides and Polymers
    Sweet, William J., III
    Parsons, Gregory N.
    LANGMUIR, 2015, 31 (26) : 7274 - 7282
  • [25] Interface formation of CuInSe2 (112) and ZnO deposited by atomic layer deposition
    Janocha, E.
    Hofmann, A.
    Pettenkofer, C.
    RADIATION PHYSICS AND CHEMISTRY, 2013, 93 : 72 - 76
  • [26] Interface defect formation for atomic layer deposition of SnO 2 on metal halide perovskites
    Mallik, Nitin
    Hajhemati, Javid
    Fregnaux, Mathieu
    Coutancier, Damien
    Toby, Ashish
    Zhang, Shan-Ting
    Hartmann, Claudia
    Huesam, Elif
    Saleh, Ahmed
    Vincent, Thomas
    Fournier, Olivier
    Wilks, Regan G.
    Aureau, Damien
    Felix, Roberto
    Schneider, Nathanaelle
    Baer, Marcus
    Schulz, Philip
    NANO ENERGY, 2024, 126
  • [27] Different Nucleation Mechanisms during Atomic Layer Deposition of HfS2 on Cobalt Oxide Surfaces
    Fickenscher, Georg
    Sidorenko, Nikolai
    Mikulinskaya, Kira
    Libuda, Jorg
    ADVANCED MATERIALS INTERFACES, 2025, 12 (01):
  • [28] Atomic Layer Deposition-based Interface Engineering for High-k/Metal Gate Stacks
    Oestling, M.
    Henkel, C.
    Litta, E. Dentoni
    Malm, G. B.
    Hellstroem, P. -E.
    Naiini, M.
    Olyaei, M.
    Vaziri, S.
    Bethge, O.
    Bertagnolli, E.
    Lemme, M. C.
    2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT-2012), 2012, : 507 - 510
  • [29] Atomic Layer Deposition for Membranes, Metamaterials, and Mechanisms
    Dorsey, Kyle J.
    Pearson, Tanner G.
    Esposito, Edward
    Russell, Sierra
    Bircan, Baris
    Han, Yimo
    Miskin, Marc Z.
    Muller, David A.
    Cohen, Itai
    McEuen, Paul L.
    ADVANCED MATERIALS, 2019, 31 (29)
  • [30] Low-temperature formation of silicon nitride gate dielectrics by atomic-layer deposition
    Nakajima, A
    Yoshimoto, T
    Kidera, T
    Yokoyama, S
    APPLIED PHYSICS LETTERS, 2001, 79 (05) : 665 - 667