Benzene is a very important molecule in a variety of industrial, environmental, and chemical systems. In combustion, benzene plays an essential role in the formation and growth of polycyclic aromatic hydrocarbons and soot. In this work, a new laser-based diagnostic is presented to make quantitative, interference-free, and sensitive measurements of benzene in the mid-infrared (MIR) region. The diagnostic is based on a widely tun-able difference-frequency-generation (DFG) laser system. We developed this laser source to emit in the MIR between 666.54 cm(-1) and 790.76 cm(-1) as a result of the DFG process between an external-cavity quantum-cascade-laser and a CO2 gas laser in a nonlinear, orientation-patterned GaAs crystal. Benzene measurements were carried out at the peak (673.94 cm(-1)) of the Q-branch of the nu(11) vibrational band of benzene. The absorption cross-section of benzene was measured over a range of pressures (4.44 mbar to 1.158 bar) at room temperature. The temperature dependence of the absorption cross-section was studied behind reflected shock waves over 553-1473 K. The diagnostic was demonstrated in a high-temperature reactive experiment of benzene formation from propargyl radicals. The new diagnostic will prove highly beneficial for high-temperature studies of benzene formation and consumption kinetics. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.