Class cover catch digraphs for latent class discovery in gene expression monitoring by DNA microarrays

被引:16
作者
Priebe, CE [1 ]
Solka, JL
Marchette, DJ
Clark, BT
机构
[1] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
[2] USN, Surface Warfare Ctr, Dahlgren, VA 22448 USA
关键词
random graphs; statistical genetics; exploratory data analysis;
D O I
10.1016/S0167-9473(02)00296-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this article is to introduce a data visualization technique for class cover catch digraphs which allows for the discovery of latent subclasses. We illustrate the technique via a pedagogical example and an application to data sets from artificial nose chemical sensing and gene expression monitoring by DNA microarrays. Of particular interest is the discovery of latent subclasses representing chemical concentration in the artificial nose data and two subtypes of acute lymphoblastic leukemia in the gene expression data and the associated conjectures pertaining to the geometry of these subclasses in their respective high-dimensional observation spaces. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2001, Mathematical Statistics: Basic Ideas and Selected Topics
[2]  
[Anonymous], 1980, CLUSTER ANAL
[3]  
Cattell R., 2012, SCI USE FACTOR ANAL
[4]  
Conover W. J., 1980, PRACTICAL NONPARAMET
[5]  
DEVINNEY JG, 2001, 633 J HOPK U DEP MAT
[6]   Coupled two-way clustering analysis of gene microarray data [J].
Getz, G ;
Levine, E ;
Domany, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12079-12084
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM
[9]  
Lehmann E. L., 1975, NONPARAMETRICS STAT
[10]   Characterizing the scale dimension of a high-dimensional classification problem [J].
Marchette, DJ ;
Priebe, CE .
PATTERN RECOGNITION, 2003, 36 (01) :45-60