Defect detection using hidden Markov random fields

被引:0
|
作者
Dogandzic, A [1 ]
Eua-anant, N [1 ]
Zhang, BH [1 ]
机构
[1] Iowa State Univ, Ctr Nondestruct Evaluat, Ames, IA 50011 USA
来源
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 24A AND 24B | 2005年 / 760卷
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We derive an approximate maximum a posteriori (MAP) method for detecting NDE defect signals using hidden Markov random fields (IIMRFs). In the proposed HMRF framework, a set of spatially distributed NDE measurements is assumed to form a noisy realization of an underlying random field that has a simple structure with Markovian dependence. Here, the random field describes the defect signals to be estimated or detected. The HMRF models incorporate measurement locations into the statistical analysis, which is important in scenarios where the same defect affects measurements at multiple locations. We also discuss initialization of the proposed HMRF detector and apply to simulated eddy-current data and experimental ultrasonic C-scan data from an inspection of a cylindrical Ti 6-4 billet.
引用
收藏
页码:704 / 711
页数:8
相关论文
共 50 条
  • [1] HIDDEN MARKOV RANDOM FIELDS
    Kuensch, Hans
    Geman, Stuart
    Kehagias, Athanasios
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (03): : 577 - 602
  • [2] Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    Fjortoft, R
    Delignon, Y
    Pieczynski, W
    Sigelle, M
    Tupin, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 675 - 686
  • [3] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [4] Handwritten document segmentation using hidden Markov random fields
    Nicolas, S
    Kessentini, Y
    Paquet, T
    Heutte, L
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 212 - 216
  • [5] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [6] Learning Heterogeneous Hidden Markov Random Fields
    Liu, Jie
    Zhang, Chunming
    Burnside, Elizabeth
    Page, David
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 576 - 584
  • [7] DOMAIN ADAPTATION WITH HIDDEN MARKOV RANDOM FIELDS
    Jacobs, Jan-Pieter
    Thoonen, Guy
    Tuia, Devis
    Camps-Valls, Gustavo
    Haest, Birgen
    Scheunders, Paul
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3112 - 3115
  • [8] Colonoscopy Video Quality Assessment using Hidden Markov Random Fields
    Park, Sun Young
    Sargent, Dusty
    Spofford, Inbar
    Vosburgh, Kirby
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [9] Vehicle Headlights Detection Using Markov Random Fields
    Zhang, Wei
    Wu, Q. M. Jonathan
    Wang, Guanghui
    COMPUTER VISION - ACCV 2009, PT I, 2010, 5994 : 169 - 179
  • [10] Human motion detection using Markov random fields
    Cao, Xiao-Qin
    Liu, Zhi-Qiang
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2010, 1 (03) : 211 - 220