Collection of low-grade waste heat for enhanced energy harvesting

被引:28
|
作者
Dede, Ercan M. [1 ]
Schmalenberg, Paul [1 ]
Wang, Chi-Ming [1 ]
Zhou, Feng [1 ]
Nomura, Tsuyoshi [2 ]
机构
[1] Toyota Motor Engn & Mfg North Amer, Toyota Res Inst, Ann Arbor, MI 48105 USA
[2] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan
来源
AIP ADVANCES | 2016年 / 6卷 / 05期
关键词
OPTIMIZATION; REALIZATION; SIMULATION;
D O I
10.1063/1.4950861
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices. (C) 2016 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A CoHCF system with enhanced energy conversion efficiency for low-grade heat harvesting
    Jiang, Jing
    Tian, Hanqing
    He, Xinrui
    Zeng, Qing
    Niu, Yi
    Zhou, Ting
    Yang, Yuan
    Wang, Chao
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (41) : 23862 - 23867
  • [2] Ionic liquid electrolytes for harvesting low-grade waste heat
    Pringle, Jenny
    Dupont, Madeleine
    Taheri, Abuzar
    Al-Masri, Danah
    MacFarlane, Douglas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Low-grade waste heat recovery scenarios: Pyroelectric, thermomagnetic, and thermogalvanic thermal energy harvesting
    Hur, Sunghoon
    Kim, Sangtae
    Kim, Hyun-Soo
    Kumar, Ajeet
    Kwon, Choah
    Shin, Joonchul
    Kang, Heemin
    Sung, Tae Hyun
    Ryu, Jungho
    Baik, Jeong Min
    Song, Hyun-Ceol
    NANO ENERGY, 2023, 114
  • [4] Harvesting energy from low-grade heat based on nanofluids
    Xu, Baoxing
    Liu, Ling
    Lim, Hyuck
    Qiao, Yu
    Chen, Xi
    NANO ENERGY, 2012, 1 (06) : 805 - 811
  • [5] An electrochemical system for efficiently harvesting low-grade heat energy
    Seok Woo Lee
    Yuan Yang
    Hyun-Wook Lee
    Hadi Ghasemi
    Daniel Kraemer
    Gang Chen
    Yi Cui
    Nature Communications, 5
  • [6] Hybrid thermoelectrochemical and concentration cells for harvesting low-grade waste heat
    Kim, Kyunggu
    Kang, Junsik
    Lee, Hochun
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [7] An electrochemical system for efficiently harvesting low-grade heat energy
    Lee, Seok Woo
    Yang, Yuan
    Lee, Hyun-Wook
    Ghasemi, Hadi
    Kraemer, Daniel
    Chen, Gang
    Cui, Yi
    NATURE COMMUNICATIONS, 2014, 5
  • [8] THEORETICAL ANALYSIS OF PYROELECTRIC HARVESTING OF LOW-GRADE EXHAUST WASTE HEAT
    Ju, Y. Sungtaek
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 8B, 2016,
  • [9] Design of an InSb thermoradiative system for harvesting low-grade waste heat
    Zhang, Xin
    Ang, Yee Sin
    Chen, Jin Can
    Ang, Lay Kee
    OPTICS LETTERS, 2019, 44 (13) : 3354 - 3357
  • [10] Nanochannels for low-grade energy harvesting
    Li, Zhong-Qiu
    Zhu, Guan-Long
    Mo, Ri-Jian
    Wu, Ming-Yang
    Ding, Xin-Lei
    Huang, Li-Qiu
    Xia, Xing-Hua
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33