On Limit Sets of Monotone Maps on Dendroids

被引:1
作者
Makhrova, E. N. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Nizhny Novgorod, Russia
关键词
dendroid; dendrite; monotone map; periodic point; non-wandering point; omega-limit set; DYNAMICS; DENDRITE;
D O I
10.2478/AMNS.2020.2.00056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a dendrite, f : X -> X be a monotone map. In the papers by I. Naghmouchi (2011, 2012) it is shown that omega-limit set omega(x, f) of any point x is an element of X has the next properties: (1) omega(x, f) subset of <(Per(f))over bar>, where Per(f) is the sei of periodic points of f; (2) omega(x, f) is either a periodic orbit or a minimal Cantor set. In the paper by E. Makhrova, K. Vaniukova (2016) it is proved that (3) Omega(F) = <(Per(f))over bar>, where Omega(f) is the set of non-wandering points of f . The aim of this note is to show that the above results (1) - (3) do not hold for monotone maps on dendroids.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 13 条