On Limit Sets of Monotone Maps on Dendroids

被引:1
作者
Makhrova, E. N. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Nizhny Novgorod, Russia
关键词
dendroid; dendrite; monotone map; periodic point; non-wandering point; omega-limit set; DYNAMICS; DENDRITE;
D O I
10.2478/AMNS.2020.2.00056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a dendrite, f : X -> X be a monotone map. In the papers by I. Naghmouchi (2011, 2012) it is shown that omega-limit set omega(x, f) of any point x is an element of X has the next properties: (1) omega(x, f) subset of <(Per(f))over bar>, where Per(f) is the sei of periodic points of f; (2) omega(x, f) is either a periodic orbit or a minimal Cantor set. In the paper by E. Makhrova, K. Vaniukova (2016) it is proved that (3) Omega(F) = <(Per(f))over bar>, where Omega(f) is the set of non-wandering points of f . The aim of this note is to show that the above results (1) - (3) do not hold for monotone maps on dendroids.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 13 条
[1]  
Balibrea F, 2002, DISCRETE CONT DYN S, V8, P983
[2]  
Balibrea F., 2001, J DYN SYST-T ASME, V3, P87
[3]   A characterization of adding machine maps [J].
Block, L ;
Keesling, J .
TOPOLOGY AND ITS APPLICATIONS, 2004, 140 (2-3) :151-161
[4]   LIAPUNOV STABILITY AND ADDING MACHINES [J].
BUESCU, J ;
STEWART, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :271-290
[5]   Dynamics of skew products of interval maps [J].
Efremova, L. S. .
RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (01) :101-178
[6]   Differential properties and attracting sets of a simplest skew product of interval maps [J].
Efremova, L. S. .
SBORNIK MATHEMATICS, 2010, 201 (06) :873-907
[7]  
Kocen Z., 1999, ANN MATH SIL, V13, P181
[8]   ON DYNAMICS OF TRIANGULAR MAPS OF THE SQUARE [J].
KOLYADA, SF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :749-768
[9]  
Kuratovski K., 1968, TOPOLOGY, V2
[10]   On the set of non-wandering points of monotone maps on local dendrites [J].
Makhrova, E. N. ;
Vaniukova, K. S. .
NOMA15 INTERNATIONAL WORKSHOP ON NONLINEAR MAPS AND APPLICATIONS, 2016, 692