Dynamic Modeling and Load Identification of Industrial Robot Using Improved Particle Swarm Optimization

被引:0
作者
Tao, Jieyu [1 ]
Ye, Bosheng [1 ]
Xie, Yuanlong [1 ]
Tang, Xiaoqi [1 ]
Song, Bao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan, Hubei, Peoples R China
来源
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2018年
基金
中国国家自然科学基金;
关键词
PARAMETER-IDENTIFICATION; PHYSICAL FEASIBILITY; MANIPULATOR; BASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise model identification is one of the key technologies for the high-performance control of a multi-joints industrial robot. In this paper, an improved particle swarm optimization algorithm (IPSO) with a cross-mutation function is presented to estimate the robotic dynamic parameters. This proposed algorithm can avoid the final solution trapping into local optimum, and the identification precision is improved significantly. Firstly, the theoretical model is deduced on the basis of the robotic load dynamic parameters. Then, the IPSO solution is derived to identify the load dynamic parameters achieving a global optimum solution. Thus, the complete robotic dynamic model can be established. The effectiveness of the proposed load identification method is verified by experiments on a real-time industrial robot. As compared with the traditional method, we show that the proposed method maintains superior identification accuracy.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
[41]   The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization [J].
Salim, Reem ;
Nabag, Mahmoud ;
Noura, Hassan ;
Fardoun, Abbas .
RENEWABLE ENERGY, 2015, 82 :26-34
[42]   Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization [J].
Ye, Meiyinq ;
Wang, Xiaodong ;
Xu, Yousheng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :981-989
[43]   An improved instrumental variable method for industrial robot model identification [J].
Brunot, M. ;
Janot, A. ;
Young, P. C. ;
Carrillo, F. .
CONTROL ENGINEERING PRACTICE, 2018, 74 :107-117
[44]   Parameters Identification of 11-Phase Torus Generator Using Particle Swarm Optimization Technique [J].
Al-Hinai, A. ;
Ai-Badi, A. .
2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, :2032-2037
[45]   PARTICLE SWARM OPTIMIZATION ALGORITHM WITH DYNAMIC INERTIA WEIGHT FOR ONLINE PARAMETER IDENTIFICATION APPLIED TO LORENZ CHAOTIC SYSTEM [J].
Alfi, Alireza .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (02) :1191-1203
[46]   Parameter Identification of MR Damper Model Based on Particle Swarm Optimization [J].
Yang, Yonggang ;
Ding, Youchuang ;
Zhu, Shixing .
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 :555-563
[47]   Parameters identification of magnetorheological damper based on particle swarm optimization algorithm [J].
Guo, Qianqian ;
Yang, Xiaolong ;
Li, Kangjun ;
Li, Decai .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 143
[48]   Conductivity Polynomial Model Parameters identification based on Particle Swarm Optimization [J].
Messai, Tlili ;
Chammam, Abdeljelil ;
Sellami, Anis .
CONTROL ENGINEERING AND APPLIED INFORMATICS, 2013, 15 (04) :58-65
[49]   Parameters identification of servo system with resonance based on particle swarm optimization [J].
Xiong, Yan ;
Li, Yesong .
Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42 (12) :111-115
[50]   Parameter Identification of Train basic resistance Based on Particle Swarm Optimization [J].
Li Tianxiang ;
Yang Hang ;
Wang Chuanru ;
Wang Qingyuan ;
Sun Pengfei ;
Feng Xiaoyun .
2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, :1572-1577