Dynamic Modeling and Load Identification of Industrial Robot Using Improved Particle Swarm Optimization

被引:0
作者
Tao, Jieyu [1 ]
Ye, Bosheng [1 ]
Xie, Yuanlong [1 ]
Tang, Xiaoqi [1 ]
Song, Bao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan, Hubei, Peoples R China
来源
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2018年
基金
中国国家自然科学基金;
关键词
PARAMETER-IDENTIFICATION; PHYSICAL FEASIBILITY; MANIPULATOR; BASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise model identification is one of the key technologies for the high-performance control of a multi-joints industrial robot. In this paper, an improved particle swarm optimization algorithm (IPSO) with a cross-mutation function is presented to estimate the robotic dynamic parameters. This proposed algorithm can avoid the final solution trapping into local optimum, and the identification precision is improved significantly. Firstly, the theoretical model is deduced on the basis of the robotic load dynamic parameters. Then, the IPSO solution is derived to identify the load dynamic parameters achieving a global optimum solution. Thus, the complete robotic dynamic model can be established. The effectiveness of the proposed load identification method is verified by experiments on a real-time industrial robot. As compared with the traditional method, we show that the proposed method maintains superior identification accuracy.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
[31]   Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor [J].
Prata, Diego Martinez ;
Schwaab, Marcio ;
Lima, Enrique Luis ;
Pinto, Jose Carlos .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (18) :3953-3967
[32]   Identification of Uncertain Incommensurate Fractional-Order Chaotic Systems Using an Improved Quantum-Behaved Particle Swarm Optimization Algorithm [J].
Wei, Jiamin ;
Yu, Yongguang ;
Cai, Di .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (05)
[33]   Parameter identification of induction motor based on particle swarm optimization [J].
Picardi, C. ;
Rogano, N. .
2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, :968-+
[34]   Identification of pollution sources in river based on particle swarm optimization [J].
Zhang, Guang-han ;
Liu, Xiao-dong ;
Wu, Si ;
Hua, Zu-lin ;
Zhao, Li ;
Xue, Hong-qin ;
Wang, Peng .
JOURNAL OF HYDRODYNAMICS, 2021, 33 (06) :1303-1315
[35]   Identification of VSD System Parameters with Particle Swarm Optimization Method [J].
Qiu, Yiming ;
Li, Wenqi ;
Yang, Dongsheng ;
Wang, Lei ;
Wu, Qidi .
ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 :227-233
[36]   Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization [J].
Zahara, Erwie ;
Liu, An .
INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, :36-+
[37]   Parameter Identification of Electro-Hydraulic Servo System of Steam Turbine Based on Improved Particle Swarm Optimization [J].
Che, Qixiang ;
He, Chengbing ;
Xu, Zhenhua ;
Yu, Qingbin ;
Gao, Yuan ;
Dong, Yuliang .
2023 5TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES, 2023, :302-307
[38]   Parameter identification of transmission chain for doubly-fed wind turbine based on improved particle swarm optimization [J].
Li H. ;
Wu Y. ;
Xie X. ;
Chai Z. ;
Gong L. ;
Lu M. .
Li, Hui (cqulh@163.com), 1600, Science Press (42) :134-142
[39]   Axial force identification of space grid structural members using particle swarm optimization method [J].
Ding, Beidou ;
Liu, Jinling ;
Huang, Zhenhua ;
Li, Xian ;
Wu, Xiaosuo ;
Cai, Liping .
JOURNAL OF BUILDING ENGINEERING, 2020, 32
[40]   The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization [J].
Salim, Reem ;
Nabag, Mahmoud ;
Noura, Hassan ;
Fardoun, Abbas .
RENEWABLE ENERGY, 2015, 82 :26-34