Dynamic Modeling and Load Identification of Industrial Robot Using Improved Particle Swarm Optimization

被引:0
作者
Tao, Jieyu [1 ]
Ye, Bosheng [1 ]
Xie, Yuanlong [1 ]
Tang, Xiaoqi [1 ]
Song, Bao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan, Hubei, Peoples R China
来源
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2018年
基金
中国国家自然科学基金;
关键词
PARAMETER-IDENTIFICATION; PHYSICAL FEASIBILITY; MANIPULATOR; BASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise model identification is one of the key technologies for the high-performance control of a multi-joints industrial robot. In this paper, an improved particle swarm optimization algorithm (IPSO) with a cross-mutation function is presented to estimate the robotic dynamic parameters. This proposed algorithm can avoid the final solution trapping into local optimum, and the identification precision is improved significantly. Firstly, the theoretical model is deduced on the basis of the robotic load dynamic parameters. Then, the IPSO solution is derived to identify the load dynamic parameters achieving a global optimum solution. Thus, the complete robotic dynamic model can be established. The effectiveness of the proposed load identification method is verified by experiments on a real-time industrial robot. As compared with the traditional method, we show that the proposed method maintains superior identification accuracy.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
  • [21] Identification of Bouc-Wen hysteretic systems using particle swarm optimization
    Charalampakis, A. E.
    Dimou, C. K.
    COMPUTERS & STRUCTURES, 2010, 88 (21-22) : 1197 - 1205
  • [22] The Identification Strategy of Bouc-Wen Model Based on Improved Particle Swarm Optimization Algorithm
    Li, Zicheng
    Xu, Ruirui
    Wang, Hou-Neng
    Xiong, Tao
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6528 - 6532
  • [23] Consistent dynamic model identification of the Staubli RX-160 industrial robot using convex optimization method
    Argin, Omer Faruk
    Bayraktaroglu, Zeki Yagiz
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (05) : 2185 - 2195
  • [24] Particle swarm optimization and identification of inelastic material parameters
    Vaz, M., Jr.
    Cardoso, E. L.
    Stahlschmidt, J.
    ENGINEERING COMPUTATIONS, 2013, 30 (07) : 936 - 960
  • [25] Dynamic parameter identification of tool-spindle interface based on RCSA and particle swarm optimization
    Wang, Erhua
    Wu, Bo
    Hu, Youmin
    Yang, Shuzi
    Cheng, Yao
    SHOCK AND VIBRATION, 2013, 20 (01) : 69 - 78
  • [26] Model Identification and Human-robot Coupling Control of Lower Limb Exoskeleton with Biogeography-based Learning Particle Swarm Optimization
    Guo, Qing
    Chen, Zhenlei
    Yan, Yao
    Xiong, Wenying
    Jiang, Dan
    Shi, Yan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (02) : 589 - 600
  • [27] Identification of Dynamic Parameters of an Industrial Robot Using a Recursively-Optimized Trajectory
    Gu, Yunjin
    Wang, Hyuk
    Cho, Jang Ho
    Lee, Doo Yong
    INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, : 1450 - 1455
  • [28] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [29] Parameter identification of LuGre friction model for servo system based on improved particle swarm optimization algorithm
    Zhang Wenjing
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 135 - 139
  • [30] Identification Method of Payload Dynamic Parameters of Industrial Robot
    Chen Y.
    Hu L.
    Jiqiren/Robot, 2020, 42 (03): : 325 - 335