Dynamic Modeling and Load Identification of Industrial Robot Using Improved Particle Swarm Optimization

被引:0
作者
Tao, Jieyu [1 ]
Ye, Bosheng [1 ]
Xie, Yuanlong [1 ]
Tang, Xiaoqi [1 ]
Song, Bao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan, Hubei, Peoples R China
来源
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2018年
基金
中国国家自然科学基金;
关键词
PARAMETER-IDENTIFICATION; PHYSICAL FEASIBILITY; MANIPULATOR; BASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise model identification is one of the key technologies for the high-performance control of a multi-joints industrial robot. In this paper, an improved particle swarm optimization algorithm (IPSO) with a cross-mutation function is presented to estimate the robotic dynamic parameters. This proposed algorithm can avoid the final solution trapping into local optimum, and the identification precision is improved significantly. Firstly, the theoretical model is deduced on the basis of the robotic load dynamic parameters. Then, the IPSO solution is derived to identify the load dynamic parameters achieving a global optimum solution. Thus, the complete robotic dynamic model can be established. The effectiveness of the proposed load identification method is verified by experiments on a real-time industrial robot. As compared with the traditional method, we show that the proposed method maintains superior identification accuracy.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
[21]   Parameter identification for Wiener model using particle swarm optimization with a case study [J].
Zhang, Yan ;
Li, Shaoyuan .
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, :1725-+
[22]   Parameter identification of a Novel Controllable Excitation Feeding Platform Based on Improved Particle Swarm Optimization [J].
Wei, Wu ;
Yi, Zhao .
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, :1708-1713
[23]   MMC-STATCOM affine parameter identification method based on improved particle swarm optimization [J].
Huang, Yaoxuan ;
Cheng, Shan ;
Huang, Yongzhang ;
Xu, Hengshan ;
Du, Pengfei .
Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2025, 53 (09) :176-187
[24]   The Identification Strategy of Bouc-Wen Model Based on Improved Particle Swarm Optimization Algorithm [J].
Li, Zicheng ;
Xu, Ruirui ;
Wang, Hou-Neng ;
Xiong, Tao .
PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, :6528-6532
[25]   Particle swarm optimization and identification of inelastic material parameters [J].
Vaz, M., Jr. ;
Cardoso, E. L. ;
Stahlschmidt, J. .
ENGINEERING COMPUTATIONS, 2013, 30 (07) :936-960
[26]   Dynamic parameter identification of tool-spindle interface based on RCSA and particle swarm optimization [J].
Wang, Erhua ;
Wu, Bo ;
Hu, Youmin ;
Yang, Shuzi ;
Cheng, Yao .
SHOCK AND VIBRATION, 2013, 20 (01) :69-78
[27]   Identification of Dynamic Parameters of an Industrial Robot Using a Recursively-Optimized Trajectory [J].
Gu, Yunjin ;
Wang, Hyuk ;
Cho, Jang Ho ;
Lee, Doo Yong .
INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, :1450-1455
[28]   Model Identification and Human-robot Coupling Control of Lower Limb Exoskeleton with Biogeography-based Learning Particle Swarm Optimization [J].
Guo, Qing ;
Chen, Zhenlei ;
Yan, Yao ;
Xiong, Wenying ;
Jiang, Dan ;
Shi, Yan .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (02) :589-600
[29]   Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization [J].
Liu X.-P. ;
Hu W.-P. ;
Zou Y.-L. ;
Zhang Y. .
Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07) :112-120
[30]   Parameter identification of LuGre friction model for servo system based on improved particle swarm optimization algorithm [J].
Zhang Wenjing .
PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, :135-139