Dynamic Modeling and Load Identification of Industrial Robot Using Improved Particle Swarm Optimization

被引:0
|
作者
Tao, Jieyu [1 ]
Ye, Bosheng [1 ]
Xie, Yuanlong [1 ]
Tang, Xiaoqi [1 ]
Song, Bao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan, Hubei, Peoples R China
来源
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2018年
基金
中国国家自然科学基金;
关键词
PARAMETER-IDENTIFICATION; PHYSICAL FEASIBILITY; MANIPULATOR; BASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise model identification is one of the key technologies for the high-performance control of a multi-joints industrial robot. In this paper, an improved particle swarm optimization algorithm (IPSO) with a cross-mutation function is presented to estimate the robotic dynamic parameters. This proposed algorithm can avoid the final solution trapping into local optimum, and the identification precision is improved significantly. Firstly, the theoretical model is deduced on the basis of the robotic load dynamic parameters. Then, the IPSO solution is derived to identify the load dynamic parameters achieving a global optimum solution. Thus, the complete robotic dynamic model can be established. The effectiveness of the proposed load identification method is verified by experiments on a real-time industrial robot. As compared with the traditional method, we show that the proposed method maintains superior identification accuracy.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
  • [1] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [2] Kinematic Parameter Identification for a Parallel Robot with an Improved Particle Swarm Optimization Algorithm
    Yu, Dayong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [3] Parameter identification of chaotic dynamic systems through an improved particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Fateh, Mohammad-Mehdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (05) : 3714 - 3720
  • [4] On line parameter identification of an induction motor, using improved particle swarm optimization
    Chen Guangyi
    Wei, Guo
    Huang Kaisheng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 745 - +
  • [5] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [6] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [7] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [8] Parameter Identification of SCARA Robot Based on Random Weight Particle Swarm Optimization
    Wang B.
    Qi Z.
    Yan R.
    Liu H.
    1600, Xi'an Jiaotong University (55): : 20 - 27
  • [9] Collaborative Position Control of Pantograph Robot Using Particle Swarm Optimization
    Ali, Nihad
    Ayaz, Yasar
    Iqbal, Jamshed
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (01) : 198 - 207
  • [10] Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm
    Huang, X. N.
    Ren, H. P.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)