Development and validation of the potential biomarkers based on m6A-related lncRNAs for the predictions of overall survival in the lung adenocarcinoma and differential analysis with cuproptosis

被引:12
作者
Gao, Chen [1 ,2 ]
Kong, Ning [1 ,2 ]
Zhang, Fan [1 ,2 ]
Zhou, Liuzhi [3 ]
Xu, Maosheng [1 ,2 ]
Wu, Linyu [1 ,2 ]
机构
[1] Zhejiang Chinese Med Univ, Dept Radiol, Affiliated Hosp 1, Zhejiang Prov Hosp OfTradit Chinese Med, 54 Youdian Rd, Hangzhou, Peoples R China
[2] Zhejiang Chinese Med Univ, Sch Clin Med 1, Hangzhou, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp 2, Dept Surg, Sch Med, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lung adenocarcinoma; N6-methyladenosine; Long non-coding RNA; Prognosis; Biomarker; NIVOLUMAB; DOCETAXEL; SIGNATURE;
D O I
10.1186/s12859-022-04869-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background The treatment and prognosis of lung adenocarcinoma (LUAD) remains a challenge. The study aimed to conduct a systematic analysis of the predictive capacity of N6-methyladenosine (m6A)-related long non-coding RNAs (lncRNAs) in the prognosis of LUAD. Methods 594 samples were totally selected from a dataset from The Cancer Genome Atlas. The identification of prognostic m6A-related lncRNAs were performed by Pearson correlation analysis and Cox regression analysis. Systematic analyses, including cluster analysis, survival analysis, and immuno-correlated analysis, were conducted. A prognosis model was built from the optimized subset of m6A-related lncRNAs. The assessment of model was performed by survival analysis, and receiver operating characteristic (ROC) curve. Finally, the risk score of patients with LUAD calculated by the prognosis model was implemented by the analysis of Cox regression. Differential analysis was for further evaluation of the cuproptosis-related genes in two risk sets. Results These patients were grouped into two clusters according to the expression levels of 22 prognostic m6A-related lncRNAs. The patients with LUAD in cluster 2 was significantly worse in the overall survival (OS) (P = 0.006). Three scores calculated by the ESTIMATE methods in cluster 2 were significantly lower. After the least absolute shrinkage and selection operator algorithm, 10 prognostic m6A-related lncRNAs were totally selected to construct the final model to obtain the risk score. Then the area under the ROC curve of the prognosis model for 1, 3, and 5-year OS was 0.767, 0.709, and 0.736 in the training set, and 0.707, 0.691, and 0.675 in the test set. The OS of the low-risk cohort was significantly higher than that of the high-risk cohort in both the training set (P < 0.001) and test set (P < 0.001). After the analysis of Cox regression, the risk score [Hazard ratio (HR) = 5.792; P < 0.001] and stage (HR = 1.576; P < 0.001) were both considered as independent indicators of prognosis for LUAD. The expression levels of five cuproptosis-related genes were significantly different in two risk sets. Conclusions The study constructed a predictive model for the OS of patients with LUAD and these OS-related m6A-lncRNAs might have potential roles in LUAD progression.
引用
收藏
页数:18
相关论文
共 38 条
[1]   Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J].
Allemani, Claudia ;
Matsuda, Tomohiro ;
Di Carlo, Veronica ;
Harewood, Rhea ;
Matz, Melissa ;
Niksic, Maja ;
Bonaventure, Audrey ;
Valkov, Mikhail ;
Johnson, Christopher J. ;
Esteve, Jacques ;
Ogunbiyi, Olufemi J. ;
Azevedo e Silva, Gulnar ;
Chen, Wan-Qing ;
Eser, Sultan ;
Engholm, Gerda ;
Stiller, Charles A. ;
Monnereau, Alain ;
Woods, Ryan R. ;
Visser, Otto ;
Lim, Gek Hsiang ;
Aitken, Joanne ;
Weir, Hannah K. ;
Coleman, Michel P. .
LANCET, 2018, 391 (10125) :1023-1075
[2]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[3]   Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population [J].
Brzezianska, Ewa ;
Karbownik, Malgorzata ;
Migdalska-Sek, Monika ;
Pastuszak-Lewandoska, Dorota ;
Wloch, Jan ;
Lewinski, Andrzej .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2006, 599 (1-2) :26-35
[4]   The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer [J].
Cheng, Yue ;
Wang, Meiqi ;
Zhou, Junliang ;
Dong, Huanhuan ;
Wang, Shuqing ;
Xu, Hui .
GENES, 2021, 12 (03)
[5]   The signature lncRNAs associated with the lung adenocarcinoma patients prognosis [J].
Ding, Yong ;
Liu, Jian-Hong .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) :1593-1603
[6]   Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer [J].
Garon, Edward B. ;
Rizvi, Naiyer A. ;
Hui, Rina ;
Leighl, Natasha ;
Balmanoukian, Ani S. ;
Eder, Joseph Paul ;
Patnaik, Amita ;
Aggarwal, Charu ;
Gubens, Matthew ;
Horn, Leora ;
Carcereny, Enric ;
Ahn, Myung-Ju ;
Felip, Enriqueta ;
Lee, Jong-Seok ;
Hellmann, Matthew D. ;
Hamid, Omid ;
Goldman, Jonathan W. ;
Soria, Jean-Charles ;
Dolled-Filhart, Marisa ;
Rutledge, Ruth Z. ;
Zhang, Jin ;
Lunceford, Jared K. ;
Rangwala, Reshma ;
Lubiniecki, Gregory M. ;
Roach, Charlotte ;
Emancipator, Kenneth ;
Gandhi, Leena .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (21) :2018-2028
[7]   Connecting copper and cancer: from transition metal signalling to metalloplasia [J].
Ge, Eva J. ;
Bush, Ashley I. ;
Casini, Angela ;
Cobine, Paul A. ;
Cross, Justin R. ;
DeNicola, Gina M. ;
Dou, Q. Ping ;
Franz, Katherine J. ;
Gohil, Vishal M. ;
Gupta, Sanjeev ;
Kaler, Stephen G. ;
Lutsenko, Svetlana ;
Mittal, Vivek ;
Petris, Michael J. ;
Polishchuk, Roman ;
Ralle, Martina ;
Schilsky, Michael L. ;
Tonks, Nicholas K. ;
Vahdat, Linda T. ;
Van Aelst, Linda ;
Xi, Dan ;
Yuan, Peng ;
Brady, Donita C. ;
Chang, Christopher J. .
NATURE REVIEWS CANCER, 2022, 22 (02) :102-113
[8]   LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer [J].
Giulietti, Matteo ;
Righetti, Alessandra ;
Principato, Giovanni ;
Piva, Francesco .
CARCINOGENESIS, 2018, 39 (08) :1016-1025
[9]   The functions of N6-methyladenosine modification in lncRNAs [J].
He, Rong-Zhang ;
Jiang, Jing ;
Luo, Di-Xian .
GENES & DISEASES, 2020, 7 (04) :598-605
[10]   The biology and management of non-small cell lung cancer [J].
Herbst, Roy S. ;
Morgensztern, Daniel ;
Boshoff, Chris .
NATURE, 2018, 553 (7689) :446-454