Monotonicity and inequalities involving the modified Bessel functions of the second kind

被引:12
作者
Yang, Zhen-Hang [1 ,2 ,3 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Elect Power Co Res Inst, Hangzhou 310014, Zhejiang, Peoples R China
[3] Elect Power Co Res Inst, Hangzhou 310014, Zhejiang, Peoples R China
关键词
Modified Bessel functions of the; second kind; Laplace transform; Monotonicity; Complete monotonicity; Inequality; BOUNDS; RATIOS; QUOTIENT; RULES;
D O I
10.1016/j.jmaa.2021.125889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-nu (x) be the modified Bessel functions of the second kind. In this paper, we give the monotonicity and complete monotonicity results for several functions involving K-nu (x), and establish several new sharp double inequalities for K nu (x). In particular, the double inequalities & nbsp;(x + a(1))(nu-1/2) < root 2/pi x(nu)e(x) K-nu (x) < (x + b(1))(nu-1/2)& nbsp;(1 + a(2)x)(nu-1/2) < 2(1-nu )/gamma(nu) x(nu)e(x)K(nu) (x) < (1 + b(2)x)(nu-1/2)& nbsp;hold for x > 0 and nu >= 1 with the best constants & nbsp;a(1 & nbsp;)= min{c(0), 1/2 nu + 1/4} and b(1) = max{c(0), 1/2 nu+1/4},& nbsp;& nbsp;a(2) = 1/max {c(0), nu - 1/2} and b(2) = min {c(0), nu - 1/2},& nbsp;where c(0) = 2 (gamma (nu) /root pi )(2/(2 nu-1)).& nbsp;(C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 34 条
[21]   A new type of sharp bounds for ratios of modified Bessel functions [J].
Ruiz-Antolin, Diego ;
Segura, Javier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) :1232-1246
[23]   Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders [J].
Tian, Jing-Feng ;
Yang, Zhenhang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
[24]  
Tian JF, 2020, AIMS MATH, V5, P7285
[25]  
Watson G. N., 1922, A Treatise on the Theory of Bessel Functions
[26]   Necessary and sufficient conditions for the representation of a function as a Laplace integral [J].
Widder, D. V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) :851-892
[27]  
Yang Z.-H, ARXIV14096408 MATHCA
[28]   Monotonicity and inequalities for the gamma function [J].
Yang, Zhen-Hang ;
Tian, Jing-Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[29]   Some properties of the divided difference of psi and polygamma functions [J].
Yang, Zhen-Hang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) :761-777
[30]   Monotonicity rule for the quotient of two functions and its application [J].
Yang, Zhen-Hang ;
Qian, Wei-Mao ;
Chu, Yu-Ming ;
Zhang, Wen .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,