Monotonicity and inequalities involving the modified Bessel functions of the second kind

被引:11
作者
Yang, Zhen-Hang [1 ,2 ,3 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Elect Power Co Res Inst, Hangzhou 310014, Zhejiang, Peoples R China
[3] Elect Power Co Res Inst, Hangzhou 310014, Zhejiang, Peoples R China
关键词
Modified Bessel functions of the; second kind; Laplace transform; Monotonicity; Complete monotonicity; Inequality; BOUNDS; RATIOS; QUOTIENT; RULES;
D O I
10.1016/j.jmaa.2021.125889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-nu (x) be the modified Bessel functions of the second kind. In this paper, we give the monotonicity and complete monotonicity results for several functions involving K-nu (x), and establish several new sharp double inequalities for K nu (x). In particular, the double inequalities & nbsp;(x + a(1))(nu-1/2) < root 2/pi x(nu)e(x) K-nu (x) < (x + b(1))(nu-1/2)& nbsp;(1 + a(2)x)(nu-1/2) < 2(1-nu )/gamma(nu) x(nu)e(x)K(nu) (x) < (1 + b(2)x)(nu-1/2)& nbsp;hold for x > 0 and nu >= 1 with the best constants & nbsp;a(1 & nbsp;)= min{c(0), 1/2 nu + 1/4} and b(1) = max{c(0), 1/2 nu+1/4},& nbsp;& nbsp;a(2) = 1/max {c(0), nu - 1/2} and b(2) = min {c(0), nu - 1/2},& nbsp;where c(0) = 2 (gamma (nu) /root pi )(2/(2 nu-1)).& nbsp;(C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 34 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F, V55
[2]   Monotonicity rules in calculus [J].
Anderson, Glen ;
Vamanamurthy, Mavina ;
Vuorinen, Matti .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (09) :805-816
[3]  
[Anonymous], 2015, EXPO MATH, P223
[4]  
Baricz A, 2009, P AM MATH SOC, V137, P189
[5]   BOUNDS FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST AND SECOND KINDS [J].
Baricz, Arpad .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :575-599
[6]  
BERNSTEiN S., 1928, ACTA MATH-DJURSHOLM, V52, P1, DOI DOI 10.1007/BF02592679
[7]  
Biernacki M., 1955, Ann. Univ. Mariae Curie-Sklodowska Sect. A, V2, P135
[8]   INEQUALITIES FOR SPECIAL FUNCTIONS [J].
BORDELON, DJ ;
ROSS, DK .
SIAM REVIEW, 1973, 15 (03) :665-670
[9]   Inequalities for modified Bessel functions and their integrals [J].
Gaunt, Robert E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :373-386
[10]   COMPLETE MONOTONICITY OF MODIFIED BESSEL-FUNCTIONS [J].
ISMAIL, MEH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (02) :353-361