Signatures of exchange correlations in the thermopower of quantum dots

被引:17
作者
Billings, Gabriel [1 ]
Stone, A. Douglas [2 ]
Alhassid, Y. [3 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Yale Univ, Ctr Theoret Phys, Sloane Phys Lab, New Haven, CT 06520 USA
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 20期
基金
美国国家科学基金会;
关键词
COULOMB-BLOCKADE OSCILLATIONS; MESOSCOPIC FLUCTUATIONS; STATISTICAL-THEORY; INTERFERENCE;
D O I
10.1103/PhysRevB.81.205303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use a many-body rate-equation approach to calculate the thermopower of a quantum dot in the presence of an exchange interaction. At temperatures much smaller than the single-particle level spacing, the known quantum jumps (discontinuities) in the thermopower are split by the exchange interaction. The origin and nature of the splitting are elucidated with a simple physical argument based on the nature of the intermediate excited state in the sequential tunneling approach. We show that this splitting is sensitive to the number parity of electrons in the dot and the dot's ground-state spin. These effects are suppressed when cotunneling dominates the electrical and thermal conductances. We calculate the thermopower in the presence of elastic cotunneling and show that some signatures of exchange correlations should still be observed with current experimental methods. In particular, we propose a method to determine the strength of the exchange interaction from measurements of the thermopower.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantum coherence in spin-orbit coupled quantum dots system
    Wang Zhi-Mei
    Wang Hong
    Xue Nai-Tao
    Cheng Gao-Yan
    ACTA PHYSICA SINICA, 2022, 71 (07)
  • [22] Two photon processes in ZnO quantum dots
    Maikhuri, Deepti
    Purohit, S. P.
    Mathur, K. C.
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 89 : 296 - 311
  • [23] Mesoscopic Fluctuations: Nuclei, Quantum Dots, and Beyond
    J. G. G. S. Ramos
    A. L. R. Barbosa
    D. Bazeia
    C. Lewenkopf
    Brazilian Journal of Physics, 2021, 51 : 263 - 268
  • [24] Quantum measures for density correlations in optical lattices
    Benatti, F.
    Floreanini, R.
    Guerreschi, G. G.
    PHYSICS LETTERS A, 2009, 373 (39) : 3516 - 3521
  • [25] Revisiting Coulomb diamond signatures in quantum Hall interferometers
    Moreau, N.
    Faniel, S.
    Martins, F.
    Desplanque, L.
    Wallart, X.
    Melinte, S.
    Bayot, V.
    Hackens, B.
    PHYSICAL REVIEW B, 2022, 105 (11)
  • [26] Quantum dots investigated with charge detection techniques
    Ihn, Thomas
    Gustavsson, Simon
    Gasser, Urszula
    Kueng, Bruno
    Mueller, Thomas
    Schleser, Roland
    Sigrist, Martin
    Shorubalko, Ivan
    Leturcq, Renaud
    Ensslin, Klaus
    SOLID STATE COMMUNICATIONS, 2009, 149 (35-36) : 1419 - 1426
  • [27] Field-Field and Photon-Photon Correlations of Light Scattered by Two Remote Two-Level InAs Quantum Dots on the Same Substrate
    Konthasinghe, K.
    Peiris, M.
    Yu, Y.
    Li, M. F.
    He, J. F.
    Wang, L. J.
    Ni, H. Q.
    Niu, Z. C.
    Shih, C. K.
    Muller, A.
    PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [28] Quantum correlations at infinite temperature: The dynamical Nagaoka effect
    Kanasz-Nagy, Marton
    Lovas, Izabella
    Grusdt, Fabian
    Greif, Daniel
    Greiner, Markus
    Demler, Eugene A.
    PHYSICAL REVIEW B, 2017, 96 (01)
  • [29] Thermoelectric transport through strongly correlated quantum dots
    Costi, T. A.
    Zlatic, V.
    PHYSICAL REVIEW B, 2010, 81 (23):
  • [30] A scheme for accurate detection of molecular bonds in quantum dots
    Deng, Y. X.
    Yan, X. H.
    EPL, 2009, 88 (06)