An efficient classification method based on principal component and sparse representation

被引:2
作者
Zhai, Lin [1 ]
Fu, Shujun [1 ]
Zhang, Caiming [2 ,3 ]
Liu, Yunxian [1 ]
Wang, Lu [4 ]
Liu, Guohua [5 ]
Yang, Mingqiang [6 ]
机构
[1] Shandong Univ, Sch Math, Shanda Nanlu 27, Jinan 250100, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250061, Peoples R China
[3] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
[4] Shandong Univ, Sch Publ Hlth, Jinan 250012, Peoples R China
[5] Shandong Univ, Qilu Childrens Hosp, Dept Ophthalmol, Jinan 250022, Peoples R China
[6] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
基金
中国国家自然科学基金;
关键词
Palmprint recognition; Image classification; Principal component analysis; Sparse representation; Subspace optimization; FACE REPRESENTATION; 2-DIMENSIONAL PCA; RECOGNITION;
D O I
10.1186/s40064-016-2511-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
引用
收藏
页数:11
相关论文
共 25 条
  • [1] [Anonymous], 2020, Digital Image Processing using Matlab
  • [2] [Anonymous], 2000, Pattern Classification, DOI DOI 10.1007/978-3-319-57027-3_4
  • [3] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [4] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [5] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [6] Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
  • [7] Double-orientation code and nonlinear matching scheme for palmprint recognition
    Fei, Lunke
    Xu, Yong
    Tang, Wenliang
    Zhang, David
    [J]. PATTERN RECOGNITION, 2016, 49 : 89 - 101
  • [8] Palmprint Feature Extraction Method Based on Rotation-invariance
    Feng, Jinghui
    Wang, He
    Li, Yang
    Liu, Fu
    [J]. BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 215 - 223
  • [9] Global linear regression coefficient classifier for recognition
    Feng, Qingxiang
    Zhu, Xingjie
    Pan, Jeng-Shyang
    [J]. OPTIK, 2015, 126 (21): : 3234 - 3239
  • [10] Evaluating the reliability of the Attitudes to Randomized Trial Questionnaire (ARTQ) in a predominantly African American sample
    Ford, Marvella E.
    Wei, Wei
    Moore, Leslie A.
    Burshell, Dana R.
    Cannady, Kimberly
    Mack, Franshawn
    Ezerioha, Nnadozie
    Ercole, Kelley
    Garrett-Mayer, Elizabeth
    [J]. SPRINGERPLUS, 2015, 4