ANALYSIS OF THE TAKENS-BOGDANOV BIFURCATION ON m-PARAMETERIZED VECTOR FIELDS

被引:30
作者
Carrillo, Francisco A. [1 ]
Verduzco, Fernando [1 ]
Delgado, Joaquin [2 ]
机构
[1] Univ Sonora, Dept Matemat, Hermosillo 83000, Sonora, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City, DF, Mexico
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 04期
关键词
Takens-Bogdanov bifurcation; center manifold; versal deformation;
D O I
10.1142/S0218127410026277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an m-parameterized family of n-dimensional vector fields, such that: (i) for some value of the parameters, the family has an equilibrium point, (ii) its linearization has a double zero eigenvalue and no other eigenvalue on the imaginary axis, sufficient conditions on the vector field are given such that the dynamics on the two-dimensional center manifold is locally topologically equivalent to the versal deformation of the planar Takens-Bogdanov bifurcation.
引用
收藏
页码:995 / 1005
页数:11
相关论文
共 8 条
[1]  
[Anonymous], 1985, Nauka
[2]  
ARROWSMITH DK, 1984, ACTA APPL MATH, V101, P138
[3]  
BOGDANOV R., 1975, Nonlinear Funct Anal Appl, V9, P144, DOI [10.1007/BF01075453, DOI 10.1007/BF01075453]
[4]   Control of the Planar Takens-Bogdanov Bifurcation with Applications [J].
Carrillo, Francisco A. ;
Verduzco, Fernando .
ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (02) :199-225
[5]  
Guckenheimer J., 2013, J APPL MECH, P475, DOI [10.1098/rsif.2013.0237, DOI 10.1115/1.3167759]
[6]  
Kuznetsov Y.A., 2000, APPL MATH SCI, V112
[7]  
Takens F., 1974, COMMUN MATH I RIJKSU, V3, P1, DOI DOI 10.1201/9781420034288
[8]  
Wiggins S., 2003, INTRO APPL NONLINEAR