SOLUTIONS OF THE PELL EQUATION x2 - (a2+2a) y2 = N VIA GENERALIZED FIBONACCI AND LUCAS NUMBERS

被引:0
作者
Peker, Bilge [1 ]
Senay, Hasan [2 ]
机构
[1] Necmettin Erbakan Univ, Ahmet Kelesoglu Educ Fac, Dept Math Educ, Konya, Turkey
[2] Mevlana Univ, Fac Educ, Konya, Turkey
关键词
Diophantine equations; Pell equations; continued fraction; integer; solutions; generalized Fibonacci and Lucas sequences;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this study, we find continued fraction expansion of Aid when d = a(2) + 2a where a is positive integer. We consider the integer solutions of the Pell equation x(2) - (a(2) + 2a) y(2) = N when N is an element of {+/-1, +/-4}. We formulate the n-th solution (x(n), y(n)) by using the continued fraction expansion. We also formulate the n-th solution (x(n), y(n)) via the generalized Fibonacci and Lucas sequences.
引用
收藏
页码:721 / 726
页数:6
相关论文
共 8 条
  • [1] Guney M., 2012, MATH AETERNA, V2, P629
  • [2] LEVEQUE WJ, 2002, TOPICS NUMBER THEORY, V1
  • [3] LEVEQUE WJ, 2002, TOPICS NUMBER THEORY, V2
  • [4] Peker B., THESIS SELCUK U
  • [5] RABINOWITZ S., 1996, Applications of Fibonacci Numbers, V6, P389
  • [6] Robbins N., 1993, BEGINNING NUMBER THE
  • [7] Robertson J.P., 2009, ACTA MATH ACAD PAEDO, V25, P155
  • [8] Robertson J.P., 2003, SOLVING GENERALIZED