Isogeometric Boundary Element Method for Two-Dimensional Steady-State Non-Homogeneous Heat Conduction Problem

被引:0
作者
Li, Yongsong [1 ]
Yin, Xiaomeng [2 ]
Xu, Yanming [1 ]
机构
[1] Huanghuai Univ, Sch Architectural Engn, Zhumadian 463000, Peoples R China
[2] Wuchang Univ Technol, Coll Intelligent Construct, Wuhan 430223, Peoples R China
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2022年 / 132卷 / 02期
关键词
Isogeometric analysis; NURBS; boundary element method; heat conduction; non-homogeneous; radial integration method; SHAPE OPTIMIZATION; TOPOLOGY OPTIMIZATION; SOUND BARRIER; IMPLEMENTATION; BEM; INTEGRATION; SCATTERING; FRACTURE; FORMULATION; NURBS;
D O I
10.32604/cmes.2022.020201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The isogeometric boundary element technique (IGABEM) is presented in this study for steady-state inhomogeneous heat conduction analysis. The physical unknowns in the boundary integral formulations of the governing equations are discretized using non-uniform rational B-spline (NURBS) basis functions, which are utilized to build the geometry of the structures. To speed up the assessment of NURBS basis functions, the B??zier extraction approach is used. To solve the extra domain integrals, we use a radial integration approach. The numerical examples show the potential of IGABEM for dimension reduction and smooth integration of CAD and numerical analysis.
引用
收藏
页码:471 / 488
页数:18
相关论文
共 47 条
  • [1] Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis
    An, Zhilin
    Yu, Tiantang
    Tinh Quoc Bui
    Wang, Chao
    Ngoc Anh Trinh
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2018, 116 : 36 - 49
  • [2] A DIRECT FORMULATION AND NUMERICAL IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL PROBLEMS OF ELASTO-PLASTICITY
    BANERJEE, PK
    CATHIE, DN
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1980, 22 (04) : 233 - 245
  • [3] Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
    Bazilevs, Y.
    Calo, V. M.
    Zhang, Y.
    Hughes, T. J. R.
    [J]. COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 310 - 322
  • [4] Isogeometric shell analysis: The Reissner-Mindlin shell
    Benson, D. J.
    Bazilevs, Y.
    Hsu, M. C.
    Hughes, T. J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 276 - 289
  • [5] Isogeometric finite element data structures based on Bezier extraction of NURBS
    Borden, Michael J.
    Scott, Michael A.
    Evans, John A.
    Hughes, Thomas J. R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) : 15 - 47
  • [6] Bi-material topology optimization for fully coupled structural-acoustic with FEM-BEM
    Chen, L. L.
    Lian, H.
    Liu, Z.
    Gong, Y.
    Zheng, C. J.
    Bordas, S. P. A.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 182 - 195
  • [7] Seamless integration of computer-aided geometric modeling and acoustic simulation: Isogeometric boundary element methods based on Catmull-Clark subdivision surfaces
    Chen, L. L.
    Zhang, Y.
    Lian, H.
    Atroshchenko, E.
    Ding, C.
    Bordas, S. P. A.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2020, 149 (149)
  • [8] Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods
    Chen, L. L.
    Lian, H.
    Liu, Z.
    Chen, H. B.
    Atroshchenko, E.
    Bordas, S. P. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 926 - 951
  • [9] Modeling pressurized fracture propagation with the isogeometric BEM
    Chen, Leilei
    Wang, Zhongwang
    Peng, Xuan
    Yang, Jianfeng
    Wu, Pengfei
    Lian, Haojie
    [J]. GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2021, 7 (03)
  • [10] Subdivision Surfaces - Boundary Element Accelerated by Fast Multipole for the Structural Acoustic Problem
    Chen, Leilei
    Lu, Chuang
    Zhao, Wenchang
    Chen, Haibo
    Zheng, Changjun
    [J]. JOURNAL OF THEORETICAL AND COMPUTATIONAL ACOUSTICS, 2020, 28 (02)