Disruption of endocytic pathway regulatory genes activates autophagy in C. elegans

被引:9
|
作者
Dwivedi, Meenakshi [2 ]
Sung, Hyun [3 ]
Shen, Haihong [4 ]
Park, Byung-Jae [1 ]
Lee, Sangho [5 ]
机构
[1] Hallym Univ, Dept Life Sci, Chunchon 200702, South Korea
[2] Univ Delhi, Dr BR Ambedkar Ctr Biomed Res, Delhi 110007, India
[3] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[4] Gwangju Inst Sci & Technol, Sch Life Sci, Kwangju 500712, South Korea
[5] Sungkyunkwan Univ, Dept Biol Sci, Suwon 440746, South Korea
关键词
autophagy; endocytic pathway; GFP::LGG-1; RAB-5; RABX-5; LIFE-SPAN; UBIQUITIN;
D O I
10.1007/s10059-011-1035-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autophagy and endocytic pathway are highly regulated catabolic processes. Both processes are crucial for cell growth, development, differentiation, disease and homeostasis and exhibit membrane rearrangement for their function. Autophagy and endocytic pathway represent branches of the lysosomal digestive system, autophagy being responsible for degradation of cytoplasmic components and endocytic pathway for degradation of exogenous substances. Here we report that autophagy is activated when endocytic pathway regulatory genes such as rab-5 and rabx-5 are disrupted. Defects in the ubiquitin binding domain of RABX-5 are critical in activating autophagy. We also observed that the elevated autophagy level does not contribute to lifespan extension of rabx-5 mutant. Our results suggest that autophagy may compensate for the endocytic pathway when regulatory genes for the endocytic pathway malfunction, providing a case of complementation between two functionally related cellular processes.
引用
收藏
页码:477 / 481
页数:5
相关论文
共 50 条
  • [31] A transcriptional cofactor regulatory network for the C. elegans intestine
    Horowitz, Brent B.
    Nanda, Shivani
    Walhout, Albertha J. M.
    G3-GENES GENOMES GENETICS, 2023, 13 (07):
  • [32] Endocytic trafficking components implicated in a C. elegans model of Alzheimer's Disease
    Gilmartin, C. J.
    Griffin, E. F.
    Caldwell, K. A.
    Caldwell, G. A.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [33] C. elegans to model autophagy-related human disorders
    Wong, Shi Quan
    Kumar, Anita V.
    Mills, Joslyn
    Lapierre, Louis R.
    AUTOPHAGY IN HEALTH AND DISEASE, 2020, 172 : 325 - 373
  • [34] Bidirectional regulation of structural damage on autophagy in the C. elegans epidermis
    Fu, Rong
    Jiang, Xiaowan
    Yang, Yuyan
    Wang, Chunxia
    Zhang, Yun
    Zhu, Yi
    Zhang, Huimin
    AUTOPHAGY, 2022, 18 (11) : 2731 - 2745
  • [35] Mitochondrial Dysfunction in C. elegans Activates Mitochondrial Relocalization and Nuclear Hormone Receptor-Dependent Detoxification Genes
    Mao, Kai
    Ji, Fei
    Breen, Peter
    Sewell, Aileen
    Han, Min
    Sadreyev, Ruslan
    Ruvkun, Gary
    CELL METABOLISM, 2019, 29 (05) : 1182 - +
  • [36] Reconstruction of Wnt/Calcium Signaling Pathway in C. elegans
    Alazi, Feras
    Haliloglu, Tuerkan
    Ulgen, Kutlu O.
    BIYOMUT: 2009 14TH NATIONAL BIOMEDICAL ENGINEERING MEETING, 2009, : 277 - 280
  • [37] Analysis of putative olfactory receptor genes in C. elegans
    Kiriyama, Keisuke
    Hirotsu, Takaaki
    Kamizaki, Tomoko
    Satou, Noriko
    Ishihara, Takeshi
    NEUROSCIENCE RESEARCH, 2009, 65 : S175 - S175
  • [38] From genes to function: the C. elegans genetic toolbox
    Boulin, Thomas
    Hobert, Oliver
    WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2012, 1 (01) : 114 - 137
  • [39] OrthoList: A Compendium of C. elegans Genes with Human Orthologs
    Shaye, Daniel D.
    Greenwald, Iva
    PLOS ONE, 2011, 6 (05):
  • [40] Hypoxia activates a latent circuit for processing gustatory information in C. elegans
    Pocock, Roger
    Hobert, Oliver
    NATURE NEUROSCIENCE, 2010, 13 (05) : 610 - U121