Generation of open-circuit spin current on GHz scale in structured Pt/YIG by electric fields

被引:3
作者
Wang, X-G [1 ,2 ]
Chotorlishvili, L. [1 ]
Guo, G-H [2 ]
Berakdar, J. [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Saale, Germany
[2] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
magnonic spin current; electric field; yttrium iron garnet; multiferroics; inverse spin Hall effect; MAGNETIC INSULATOR; MULTIFERROICS; DYNAMICS;
D O I
10.1088/1361-6463/aa93b4
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent studies point to virtual hopping of the oxygen atoms and strong spin-orbit interaction as the source of coupling of the magnetic order of yttrium iron garnet (YIG) to an applied external electric field. As shown here, an electric field can thus be utilized for pumping magnonic spin current at structured Pt / YIG interface. A finite uniform temperature is needed to thermally activate magnons as the carriers of the spin current. This current arises thus at finite uniform temperatures, applied external electric field, and for appropriate nanostructuring. Due to the inverse spin Hall effect, the generated magnonic spin pumping current is further converted into an electric voltage. We analyze the underlaying microscopic mechanism for the generation of the spin current and demonstrate by full numerical simulations that the spin current is substantial. Effects related to static as well as time-dependent E-fields and enhanced damping are discussed. The results indicate that generally, the proposed method for generating spin currents works for magnetic insulators that respond to a moderate electric field, and that the required nanostructuring poses no obstacle making this approach highly suitable for spintronic applications.
引用
收藏
页数:7
相关论文
共 35 条
  • [1] Thermal Spin Dynamics of Yttrium Iron Garnet
    Barker, Joseph
    Bauer, Gerrit E. W.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [2] Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/NMAT3301, 10.1038/nmat3301]
  • [3] Multiferroics:: Towards a magnetoelectric memory
    Bibes, Manuel
    Barthelemy, Agnes
    [J]. NATURE MATERIALS, 2008, 7 (06) : 425 - 426
  • [4] Cornelissen LJ, 2015, NAT PHYS, V11, P1022, DOI [10.1038/NPHYS3465, 10.1038/nphys3465]
  • [5] Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers
    Czeschka, F. D.
    Dreher, L.
    Brandt, M. S.
    Weiler, M.
    Althammer, M.
    Imort, I. -M.
    Reiss, G.
    Thomas, A.
    Schoch, W.
    Limmer, W.
    Huebl, H.
    Gross, R.
    Goennenwein, S. T. B.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (04)
  • [6] Spectral characteristics of time resolved magnonic spin Seebeck effect
    Etesami, S. R.
    Chotorlishvili, L.
    Berakdar, J.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (13)
  • [7] Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator
    Etesami, S. R.
    Chotorlishvili, L.
    Sukhov, A.
    Berakdar, J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (01)
  • [8] Magnetization noise in magnetoelectronic nanostructures
    Foros, J
    Brataas, A
    Tserkovnyak, Y
    Bauer, GEW
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (01)
  • [9] Langevin-dynamics study of the dynamical properties of small magnetic particles
    García-Palacios, JL
    Lázaro, FJ
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : 14937 - 14958
  • [10] Landau-Lifshitz theory of the longitudinal spin Seebeck effect
    Hoffman, Silas
    Sato, Koji
    Tserkovnyak, Yaroslav
    [J]. PHYSICAL REVIEW B, 2013, 88 (06)