A methodology to derive global maps of leaf traits using remote sensing and climate data

被引:134
作者
Moreno-Martinez, Alvaro [1 ]
Camps-Valls, Gustau [2 ]
Kattge, Jens [3 ]
Robinson, Nathaniel [1 ]
Reichstein, Markus [3 ]
van Bodegom, Peter [15 ]
Kramer, Koen [4 ]
Cornelissen, J. Hans C. [5 ]
Reich, Peter [6 ]
Bahn, Michael [16 ]
Niinemets, Ulo [8 ]
Penuelas, Josep [10 ]
Craine, Joseph M. [17 ]
Cerabolini, Bruno E. L. [7 ]
Minden, Vanessa [11 ]
Laughlin, Daniel C. [12 ]
Sack, Lawren [13 ]
Allred, Brady [1 ]
Baraloto, Christopher [14 ]
Byun, Chaeho [9 ]
Soudzilovskaia, Nadejda A. [15 ]
Running, Steve W. [1 ]
机构
[1] Univ Montana, NTSG, Coll Forestry & Conservat, Missoula, MT 59812 USA
[2] Univ Valencia, IPL, Valencia, Spain
[3] Max Planck Inst Biogeochem MPI BGC, Jena, Germany
[4] Wageningen Univ, Wageningen Environm Res WUR, Wageningen, Netherlands
[5] Vrije Univ, Dept Ecol Sci, Syst Ecol, Amsterdam, Netherlands
[6] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[7] Univ Insubria, Dipartimento Sci Teor & Applicate DiSTA, Varese, Italy
[8] Estonian Univ Life Sci, Dept Crop Sci & Plant Biol, Tartu, Estonia
[9] Yonsei Univ, Sch Civil & Environm Engn, Seoul, South Korea
[10] Ctr Res Ecol & Forestry Applicat CREAF, Cerdanyola Del Valles, Catalonia, Spain
[11] Carl von Ossietzky Univ Oldenburg, Inst Biol & Environm Sci, Landscape Ecol Grp, Oldenburg, Germany
[12] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA
[13] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA
[14] Florida Int Univ, Dept Biol Sci, Int Ctr Trop Bot, Miami, FL 33199 USA
[15] Leiden Univ, Inst Environm Sci, Conservat Biol Dept, Leiden, Netherlands
[16] Univ Innsbruck, Inst Ecol, Plant Soil & Ecosyst Proc, Innsbruck, Austria
[17] Jonah Ventures, Manhattan, KS USA
基金
欧洲研究理事会;
关键词
Plant traits; Machine learning; Random forests; Remote sensing; Plant ecology; Climate; MODIS; Landsat; PLANT FUNCTIONAL TYPES; RANDOM FORESTS; IMAGING SPECTROSCOPY; MULTIPLE-REGRESSION; VEGETATION; MODEL; AREA; BIODIVERSITY; REFLECTANCE; DIVERSITY;
D O I
10.1016/j.rse.2018.09.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surrogates to fill gaps in the database (> 45% of missing entries) and maximizes the global representativeness of the trait dataset. Plant species are then aggregated to Plant Functional Types (PFTs). Next, the spatial abundance of PFTs at MODIS resolution (500 m) is calculated using Landsat data (30 m). Based on these PFT abundances, representative trait values are calculated for MODIS pixels with nearby trait data. Finally, different regression algorithms are applied to globally predict trait estimates from these MODIS pixels using remote sensing and climate data. The methods were compared in terms of precision, robustness and efficiency. The best model (random forests regression) shows good precision (normalized RMSE <= 20%) and goodness of fit (averaged Pearson's correlation R = 0.78) in any considered trait. Along with the estimated global maps of leaf traits, we provide associated uncertainty estimates derived from the regression models. The process chain is modular, and can easily accommodate new traits, data streams (traits databases and remote sensing data), and methods. The machine learning techniques applied allow attribution of information gain to data input and thus provide the opportunity to understand trait-environment relationships at the plant and ecosystem scales. The new data products the gap-filled trait matrix, a global map of PFT abundance per MODIS gridcells and the high-resolution global leaf trait maps are complementary to existing large-scale observations of the land surface and we therefore anticipate substantial contributions to advances in quantifying, understanding and prediction of the Earth system.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 113 条
[1]   Scaling up functional traits for ecosystem services with remote sensing: concepts and methods [J].
Abelleira Martinez, Oscar J. ;
Fremier, Alexander K. ;
Guenter, Sven ;
Bendana, Zayra Ramos ;
Vierling, Lee ;
Galbraith, Sara M. ;
Bosque-Perez, Nilsa A. ;
Ordonez, Jenny C. .
ECOLOGY AND EVOLUTION, 2016, 6 (13) :4359-4371
[2]   Intraspecific functional variability: extent, structure and sources of variation [J].
Albert, Cecile Helene ;
Thuiller, Wilfried ;
Yoccoz, Nigel Gilles ;
Soudant, Alex ;
Boucher, Florian ;
Saccone, Patrick ;
Lavorel, Sandra .
JOURNAL OF ECOLOGY, 2010, 98 (03) :604-613
[3]   Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest [J].
Ali, Abebe Mohammed ;
Darvishzadeh, Roshanak ;
Skidmore, Andrew K. ;
van Duren, Iris ;
Heiden, Uta ;
Heurich, Marco .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 45 :66-76
[4]  
[Anonymous], 2004, Kernel Methods for Pattern Analysis
[5]  
[Anonymous], 2012, ICML
[6]   Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence [J].
Anten, NPR .
ANNALS OF BOTANY, 2005, 95 (03) :495-506
[7]   The European Earth monitoring (GMES) programme: Status and perspectives [J].
Aschbacher, Josef ;
Milagro-Perez, Maria Pilar .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :3-8
[8]   FOREST CONSERVATION Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation [J].
Asner, G. P. ;
Martin, R. E. ;
Knapp, D. E. ;
Tupayachi, R. ;
Anderson, C. B. ;
Sinca, F. ;
Vaughn, N. R. ;
Llactayo, W. .
SCIENCE, 2017, 355 (6323) :385-388
[9]   Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing [J].
Asner, Gregory P. ;
Martin, Roberta E. .
GLOBAL ECOLOGY AND CONSERVATION, 2016, 8 :212-219
[10]   Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems [J].
Baret, Frederic ;
Buis, Samuel .
ADVANCES IN LAND REMOTE SENSING: SYSTEM, MODELING, INVERSION AND APPLICATION, 2008, :173-+