Review: Expanding roles of plant aquaporins in plasma membranes and cell organelles

被引:64
作者
Katsuhara, Maki [2 ]
Hanba, Yuko T.
Shiratake, Katsuhiro [1 ,3 ]
Maeshima, Masayoshi [1 ,3 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan
[2] Okayama Univ, Bioresources Res Inst, Kurashiki, Okayama 7100046, Japan
[3] Kyoto Inst Technol, Ctr Bioresource Field Sci, Kyoto 6168354, Japan
关键词
ER; flower; fruit; structure-function relationship; vacuolar membrane; water channel; water transport;
D O I
10.1071/FP07130
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aquaporins facilitate water transport across biomembranes in a manner dependent on osmotic pressure and water-potential gradient. The discovery of aquaporins has facilitated research on intracellular and whole-plant water transport at the molecular level. Aquaporins belong to a ubiquitous family of membrane intrinsic proteins (MIP). Plants have four subfamilies: plasma-membrane intrinsic protein (PIP), tonoplast intrinsic protein ( TIP), nodulin 26-like intrinsic protein (NIP), and small basic intrinsic protein (SIP). Recent research has revealed a diversity of plant aquaporins, especially their physiological functions and intracellular localisation. A few PIP members have been reported to be involved in carbon dioxide permeability of cells. Newly identified transport substrates for NIP members of rice and Arabidopsis thaliana have been demonstrated to transport silicon and boron, respectively. Ammonia, glycerol, and hydrogen peroxide have been identified as substrates for plant aquaporins. The intracellular localisation of plant aquaporins is diverse; for example, SIP members are localised on the ER membrane. There has been much progress in the research on the functional regulation of water channel activity of PIP members including phosphorylation, formation of hetero-oligomer, and protonation of histidine residues under acidic condition. This review provides a broad overview of the range of potential aquaporins, which are now believed to participate in the transport of several small molecules in various membrane systems in model plants, crops, flowers and fruits.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 146 条
[1]   Aquaporin water channels (Nobel lecture) [J].
Agre, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (33) :4278-4290
[2]   Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress [J].
Aharon, R ;
Shahak, Y ;
Wininger, S ;
Bendov, R ;
Kapulnik, Y ;
Galili, G .
PLANT CELL, 2003, 15 (02) :439-447
[3]   The role of Aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots [J].
Aroca, R ;
Amodeo, G ;
Fernández-Illescas, S ;
Herman, EM ;
Chaumont, F ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2005, 137 (01) :341-353
[4]   Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals [J].
Azad, AK ;
Sawa, Y ;
Ishikawa, T ;
Shibata, H .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (05) :608-617
[5]  
AZAD AK, 2007, IN PRESS PLANT CELL
[6]   Plant aquaporins [J].
Baiges, I ;
Schäffner, AR ;
Affenzeller, MJ ;
Mas, A .
PHYSIOLOGIA PLANTARUM, 2002, 115 (02) :175-182
[7]   Aquaporin localization - how valid are the TIP and PIP labels? [J].
Barkla, BJ ;
Vera-Estrella, R ;
Pantoja, O ;
Kirch, HH ;
Bohnert, HJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (03) :86-88
[8]   Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo [J].
Bernacchi, CJ ;
Portis, AR ;
Nakano, H ;
von Caemmerer, S ;
Long, SP .
PLANT PHYSIOLOGY, 2002, 130 (04) :1992-1998
[9]   Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes [J].
Bienert, Gerd P. ;
Moller, Anders L. B. ;
Kristiansen, Kim A. ;
Schulz, Alexander ;
Moller, Ian M. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1183-1192
[10]   Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression [J].
Boursiac, Y ;
Chen, S ;
Luu, DT ;
Sorieul, M ;
van den Dries, N ;
Maurel, C .
PLANT PHYSIOLOGY, 2005, 139 (02) :790-805