Fusion High-Resolution Network for Diagnosing ChestX-ray Images

被引:12
作者
Huang, Zhiwei [1 ,2 ]
Lin, Jinzhao [3 ]
Xu, Liming [4 ]
Wang, Huiqian [3 ]
Bai, Tong [3 ]
Pang, Yu [3 ]
Meen, Teen-Hang [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Photoelect Informat Sensing & T, Chongqing 400065, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[5] Natl Formosa Univ, Dept Elect Engn, Huwei Township 632, Yunlin, Taiwan
基金
中国国家自然科学基金;
关键词
thorax disease classification; deep learning; ChestX-ray; 14; dataset; feature fusion;
D O I
10.3390/electronics9010190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of deep convolutional neural networks (CNN) in the field of medical image processing has attracted extensive attention and demonstrated remarkable progress. An increasing number of deep learning methods have been devoted to classifying ChestX-ray (CXR) images, and most of the existing deep learning methods are based on classic pretrained models, trained by global ChestX-ray images. In this paper, we are interested in diagnosing ChestX-ray images using our proposed Fusion High-Resolution Network (FHRNet). The FHRNet concatenates the global average pooling layers of the global and local feature extractors-it consists of three branch convolutional neural networks and is fine-tuned for thorax disease classification. Compared with the results of other available methods, our experimental results showed that the proposed model yields a better disease classification performance for the ChestX-ray 14 dataset, according to the receiver operating characteristic curve and area-under-the-curve score. An ablation study further confirmed the effectiveness of the global and local branch networks in improving the classification accuracy of thorax diseases.
引用
收藏
页数:12
相关论文
共 51 条
[21]   Deep Learning in Medical Imaging: General Overview [J].
Lee, June-Goo ;
Jun, Sanghoon ;
Cho, Young-Won ;
Lee, Hyunna ;
Kim, Guk Bae ;
Seo, Joon Beom ;
Kim, Namkug .
KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) :570-584
[22]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[23]   SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images [J].
Liu, Han ;
Wang, Lei ;
Nan, Yandong ;
Jin, Faguang ;
Wang, Qi ;
Pu, Jiantao .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 :66-73
[24]   An Ensemble SSL Algorithm for Efficient Chest X-Ray Image Classification [J].
Livieris, Ioannis E. ;
Kanavos, Andreas ;
Tampakas, Vassilis ;
Pintelas, Panagiotis .
JOURNAL OF IMAGING, 2018, 4 (07)
[25]  
Lyman K., 2017, ARXIV171010501CS
[26]   Computer-aided detection in chest radiography based on artificial intelligence: a survey [J].
Qin, Chunli ;
Yao, Demin ;
Shi, Yonghong ;
Song, Zhijian .
BIOMEDICAL ENGINEERING ONLINE, 2018, 17
[27]   Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists [J].
Rajpurkar, Pranav ;
Irvin, Jeremy ;
Ball, Robyn L. ;
Zhu, Kaylie ;
Yang, Brandon ;
Mehta, Hershel ;
Duan, Tony ;
Ding, Daisy ;
Bagul, Aarti ;
Langlotz, Curtis P. ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Blankenberg, Francis G. ;
Seekins, Jayne ;
Amrhein, Timothy J. ;
Mong, David A. ;
Halabi, Safwan S. ;
Zucker, Evan J. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[28]  
Rajpurkar P, 2017, Arxiv, DOI arXiv:1711.05225
[29]  
Shen DG, 2017, ANNU REV BIOMED ENG, V19, P221, DOI [10.1146/annurev-bioeng-071516-044442, 10.1146/annurev-bioeng-071516044442]
[30]   Dynamic Routing on Deep Neural Network for Thoracic Disease Classification and Sensitive Area Localization [J].
Shen, Yan ;
Gao, Mingchen .
MACHINE LEARNING IN MEDICAL IMAGING: 9TH INTERNATIONAL WORKSHOP, MLMI 2018, 2018, 11046 :389-397