Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry

被引:12
作者
Aoki, Hiroyuki [1 ,2 ]
Liu, Yuwei [2 ]
Yamashita, Takashi [3 ]
机构
[1] Japan Atom Energy Agcy, J PARC Ctr, Mat & Life Sci Div, 2-4 Shirakata, Tokai, Ibaraki 3191195, Japan
[2] High Energy Accelerator Res Org, Inst Mat Struct Sci, 203-1 Shirakata, Tokai, Ibaraki 2031, Japan
[3] AdvanceSoft Corp, 4-3 Kandasurugadai, Tokyo 1010062, Japan
基金
日本学术振兴会;
关键词
X-RAY REFLECTOMETRY; REFLECTION; FILMS; SURFACE; PHASE;
D O I
10.1038/s41598-021-02085-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neutron reflectometry (NR) allows us to probe into the structure of the surfaces and interfaces of various materials such as soft matters and magnetic thin films with a contrast mechanism dependent on isotopic and magnetic states. The neutron beam flux is relatively low compared to that of other sources such as synchrotron radiation; therefore, there has been a strong limitation in the time-resolved measurement and further advanced experiments such as surface imaging. This study aims at the development of a methodology to enable the structural analysis by the NR data with a large statistical error acquired in a short measurement time. The neural network-based method predicts the true NR profile from the data with a 20-fold lower signal compared to that obtained under the conventional measurement condition. This indicates that the acquisition time in the NR measurement can be reduced by more than one order of magnitude. The current method will help achieve remarkable improvement in temporally and spatially resolved NR methods to gain further insight into the surface and interfaces of materials.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Neutron Reflectometry Tomography for Imaging and Depth Structure Analysis of Thin Films with In-Plane Inhomogeneity [J].
Aoki, Hiroyuki ;
Ogawa, Hiroki ;
Takenaka, Mikihito .
LANGMUIR, 2021, 37 (01) :196-203
[2]   Chain dynamics in spin-coated films of poly(methyl methacrylate) in a solvent annealing process [J].
Aoki, Hiroyuki .
POLYMER JOURNAL, 2019, 51 (06) :611-616
[3]   POLARIZED NEUTRON REFLECTION AS A PROBE OF MAGNETIC-FILMS AND MULTILAYERS [J].
BLUNDELL, SJ ;
BLAND, JAC .
PHYSICAL REVIEW B, 1992, 46 (06) :3391-3400
[4]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Machine learning for neutron reflectometry data analysis of two-layer thin films * [J].
Doucet, Mathieu ;
Archibald, Richard K. ;
Heller, William T. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03)
[7]   Neural network analysis of neutron and x-ray reflectivity data: Pathological cases, performance and perspectives [J].
Greco A. ;
Starostin V. ;
Hinderhofer A. ;
Gerlach A. ;
Skoda M.W.A. ;
Kowarik S. ;
Schreiber F. .
Machine Learning: Science and Technology, 2021, 2 (04)
[8]   Fast fitting of reflectivity data of growing thin films using neural networks [J].
Greco, Alessandro ;
Starostin, Vladimir ;
Karapanagiotis, Christos ;
Hinderhofer, Alexander ;
Gerlach, Alexander ;
Pithan, Linus ;
Liehr, Sascha ;
Schreiber, Frank ;
Kowarik, Stefan .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 :1342-1347
[9]   Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity [J].
Inoue, Rintaro ;
Kawashima, Kazuko ;
Matsui, Kazuya ;
Kanaya, Toshiji ;
Nishida, Koji ;
Matsuba, Go ;
Hino, Masahiro .
PHYSICAL REVIEW E, 2011, 83 (02)
[10]   A high-temperature ferromagnetic topological insulating phase by proximity coupling [J].
Katmis, Ferhat ;
Lauter, Valeria ;
Nogueira, Flavio S. ;
Assaf, Badih A. ;
Jamer, Michelle E. ;
Wei, Peng ;
Satpati, Biswarup ;
Freeland, John W. ;
Eremin, Ilya ;
Heiman, Don ;
Jarillo-Herrero, Pablo ;
Moodera, Jagadeesh S. .
NATURE, 2016, 533 (7604) :513-+