View-Centralized Multi-Atlas Classification for Alzheimer's Disease Diagnosis

被引:87
作者
Liu, Mingxia [1 ,2 ,3 ,4 ]
Zhang, Daoqiang [1 ]
Shen, Dinggang [2 ,3 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Univ N Carolina, Dept Radiol, CB 7510, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[4] Taishan Univ, Sch Informat Sci & Technol, Tai An 271021, Shandong, Peoples R China
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
基金
中国国家自然科学基金;
关键词
multiatlas classification; feature selection; Alzheimer's disease; ensemble learning; multiview learning; VOXEL-BASED MORPHOMETRY; HIPPOCAMPAL ATROPHY; MR-IMAGES; REGISTRATION; SELECTION; SCHIZOPHRENIA; OPTIMIZATION; SEGMENTATION; SHRINKAGE; ALGORITHM;
D O I
10.1002/hbm.22741
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multi-atlas based methods have been recently used for classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are less biased by a certain atlas. However, most existing multiatlas based methods simply average or concatenate the features from multiple atlases, which may ignore the potentially important diagnosis information related to the anatomical differences among different atlases. In this paper, we propose a novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful information in multiple feature representations from different atlases. Specifically, all brain images are registered onto multiple atlases individually, to extract feature representations in each atlas space. Then, the proposed view-centralized multi-atlas feature selection method is used to select the most discriminative features from each atlas with extra guidance from other atlases. Next, we design a support vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer's Disease Neuroimaging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the proposed method can significantly outperform the previous multi-atlas based classification methods. Hum Brain Mapp 36:1847-1865, 2015. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1847 / 1865
页数:19
相关论文
共 79 条
[31]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601
[32]   Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer's disease clinical trials [J].
Hua, Xue ;
Hibar, Derrek P. ;
Ching, Christopher R. K. ;
Boyle, Christina P. ;
Rajagopalan, Priya ;
Gutman, Boris A. ;
Leow, Alex D. ;
Toga, Arthur W. ;
Jack, Clifford R., Jr. ;
Harvey, Danielle ;
Weiner, Michael W. ;
Thompson, Paul M. .
NEUROIMAGE, 2013, 66 :648-661
[33]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[34]   Improved optimization for the robust and accurate linear registration and motion correction of brain images [J].
Jenkinson, M ;
Bannister, P ;
Brady, M ;
Smith, S .
NEUROIMAGE, 2002, 17 (02) :825-841
[35]   A global optimisation method for robust affine registration of brain images [J].
Jenkinson, M ;
Smith, S .
MEDICAL IMAGE ANALYSIS, 2001, 5 (02) :143-156
[36]   Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification [J].
Jie, Biao ;
Zhang, Daoqiang ;
Wee, Chong-Yaw ;
Shen, Dinggang .
HUMAN BRAIN MAPPING, 2014, 35 (07) :2876-2897
[37]   Three-Dimensional Surface Deformation-Based Shape Analysis of Hippocampus and Caudate Nucleus in Children with Fetal Alcohol Spectrum Disorders [J].
Joseph, Jesuchristopher ;
Warton, Christopher ;
Jacobson, Sandra W. ;
Jacobson, Joseph L. ;
Molteno, Chris D. ;
Eicher, Anton ;
Marais, Patrick ;
Phillips, Owen R. ;
Narr, Katherine L. ;
Meintjes, Ernesta M. .
HUMAN BRAIN MAPPING, 2014, 35 (02) :659-672
[38]   Progression of structural neuropathology in preclinical Huntington's disease: a tensor based morphometry study [J].
Kipps, CM ;
Duggins, AJ ;
Mahant, N ;
Gomes, L ;
Ashburner, J ;
McCusker, EA .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2005, 76 (05) :650-655
[39]   Automatic classification of MR scans in Alzheimers disease [J].
Kloeppel, Stefan ;
Stonnington, Cynthia M. ;
Chu, Carlton ;
Draganski, Bogdan ;
Scahill, Rachael I. ;
Rohrer, Jonathan D. ;
Fox, Nick C. ;
Jack, Clifford R., Jr. ;
Ashburner, John ;
Frackowiak, Richard S. J. .
BRAIN, 2008, 131 :681-689
[40]   Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease [J].
Koikkalainen, Juha ;
Lotjonen, Jyrki ;
Thurfjell, Lennart ;
Rueckert, Daniel ;
Waldemar, Gunhild ;
Soininen, Hilkka .
NEUROIMAGE, 2011, 56 (03) :1134-1144