STENSL: Microbial Source Tracking with ENvironment SeLection

被引:7
作者
An, Ulzee [1 ]
Shenhav, Liat [2 ]
Olson, Christine A. [3 ]
Hsiao, Elaine Y. [3 ]
Halperin, Eran [1 ,4 ,5 ,6 ]
Sankararaman, Sriram [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[2] Rockefeller Univ, Ctr Studies Phys & Biol, 1230 York Ave, New York, NY 10021 USA
[3] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA USA
[5] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[6] Univ Calif Los Angeles, Dept Anesthesiol & Perioperat Med, Los Angeles, CA USA
关键词
feature selection; microbial source tracking; microbiome; mixture models; sparsity;
D O I
10.1128/msystems.00995-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbial source tracking analysis has emerged as a widespread technique for characterizing the properties of complex microbial communities. However, this analysis is currently limited to source environments sampled in a specific study. In order to expand the scope beyond one single study and allow the exploration of source environments using large databases and repositories, such as the Earth Microbiome Project, a source selection procedure is required. Such a procedure will allow differentiating between contributing environments and nuisance ones when the number of potential sources considered is high. Here, we introduce STENSL (microbial Source Tracking with ENvironment SeLection), a machine learning method that extends common microbial source tracking analysis by performing an unsupervised source selection and enabling sparse identification of latent source environments. By incorporating sparsity into the estimation of potential source environments, STENSL improves the accuracy of true source contribution, while significantly reducing the noise introduced by noncontributing ones. We therefore anticipate that source selection will augment microbial source tracking analyses, enabling exploration of multiple source environments from publicly available repositories while maintaining high accuracy of the statistical inference. IMPORTANCE Microbial source tracking is a powerful tool to characterize the properties of complex microbial communities. However, this analysis is currently limited to source environments sampled in a specific study. In many applications there is a clear need to consider source selection over a large array of microbial environments, external to the study. To this end, we developed STENSL (microbial Source Tracking with ENvironment SeLection), an expectation-maximization algorithm with sparsity that enables the identification of contributing sources among a large set of potential microbial environments. With the unprecedented expansion of microbiome data repositories such as the Earth Microbiome Project, recording over 200,000 samples from more than 50 types of categorized environments, STENSL takes the first steps in performing automated source exploration and selection. STENSL is significantly more accurate in identifying the contributing sources as well as the unknown source, even when considering hundreds of potential source environments, settings in which state-of-the-art microbial source tracking methods add considerable error.
引用
收藏
页数:13
相关论文
共 10 条
[1]   Microbial community dissimilarity for source tracking with application in forensic studies [J].
Carter, Kyle M. ;
Lu, Meng ;
Luo, Qianwen ;
Jiang, Hongmei ;
An, Lingling .
PLOS ONE, 2020, 15 (07)
[2]   Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer [J].
Dominguez-Bello, Maria G. ;
De Jesus-Laboy, Kassandra M. ;
Shen, Nan ;
Cox, Laura M. ;
Amir, Amnon ;
Gonzalez, Antonio ;
Bokulich, Nicholas A. ;
Song, Se Jin ;
Hoashi, Marina ;
Rivera-Vinas, Juana I. ;
Mendez, Keimari ;
Knight, Rob ;
Clemente, Jose C. .
NATURE MEDICINE, 2016, 22 (03) :250-253
[3]   Structure, function and diversity of the healthy human microbiome [J].
Huttenhower, Curtis ;
Gevers, Dirk ;
Knight, Rob ;
Abubucker, Sahar ;
Badger, Jonathan H. ;
Chinwalla, Asif T. ;
Creasy, Heather H. ;
Earl, Ashlee M. ;
FitzGerald, Michael G. ;
Fulton, Robert S. ;
Giglio, Michelle G. ;
Hallsworth-Pepin, Kymberlie ;
Lobos, Elizabeth A. ;
Madupu, Ramana ;
Magrini, Vincent ;
Martin, John C. ;
Mitreva, Makedonka ;
Muzny, Donna M. ;
Sodergren, Erica J. ;
Versalovic, James ;
Wollam, Aye M. ;
Worley, Kim C. ;
Wortman, Jennifer R. ;
Young, Sarah K. ;
Zeng, Qiandong ;
Aagaard, Kjersti M. ;
Abolude, Olukemi O. ;
Allen-Vercoe, Emma ;
Alm, Eric J. ;
Alvarado, Lucia ;
Andersen, Gary L. ;
Anderson, Scott ;
Appelbaum, Elizabeth ;
Arachchi, Harindra M. ;
Armitage, Gary ;
Arze, Cesar A. ;
Ayvaz, Tulin ;
Baker, Carl C. ;
Begg, Lisa ;
Belachew, Tsegahiwot ;
Bhonagiri, Veena ;
Bihan, Monika ;
Blaser, Martin J. ;
Bloom, Toby ;
Bonazzi, Vivien ;
Brooks, J. Paul ;
Buck, Gregory A. ;
Buhay, Christian J. ;
Busam, Dana A. ;
Campbell, Joseph L. .
NATURE, 2012, 486 (7402) :207-214
[4]   Bayesian community-wide culture-independent microbial source tracking [J].
Knights, Dan ;
Kuczynski, Justin ;
Charlson, Emily S. ;
Zaneveld, Jesse ;
Mozer, Michael C. ;
Collman, Ronald G. ;
Bushman, Frederic D. ;
Knight, Rob ;
Kelley, Scott T. .
NATURE METHODS, 2011, 8 (09) :761-U107
[5]   Longitudinal analysis of microbial interaction between humans and the indoor environment [J].
Lax, Simon ;
Smith, Daniel P. ;
Hampton-Marcell, Jarrad ;
Owens, Sarah M. ;
Handley, Kim M. ;
Scott, Nicole M. ;
Gibbons, Sean M. ;
Larsen, Peter ;
Shogan, Benjamin D. ;
Weiss, Sophie ;
Metcalf, Jessica L. ;
Ursell, Luke K. ;
Vazquez-Baeza, Yoshiki ;
Van Treuren, Will ;
Hasan, Nur A. ;
Gibson, Molly K. ;
Colwell, Rita ;
Dantas, Gautam ;
Knight, Rob ;
Gilbert, Jack A. .
SCIENCE, 2014, 345 (6200) :1048-1052
[6]   FEAST: fast expectation-maximization for microbial source tracking [J].
Shenhav, Liat ;
Thompson, Mike ;
Joseph, Tyler A. ;
Briscoe, Leah ;
Furman, Ori ;
Bogumil, David ;
Mizrahi, Itzhak ;
Pe'er, Itsik ;
Halperin, Eran .
NATURE METHODS, 2019, 16 (07) :627-+
[7]   Toward Forensic Uses of Microbial Source Tracking [J].
Teaf, Christopher M. ;
Flores, David ;
Garber, Michele ;
Harwood, Valerie J. .
MICROBIOLOGY SPECTRUM, 2018, 6 (01)
[8]   A communal catalogue reveals Earth's multiscale microbial diversity [J].
Thompson, Luke R. ;
Sanders, Jon G. ;
McDonald, Daniel ;
Amir, Amnon ;
Ladau, Joshua ;
Locey, Kenneth J. ;
Prill, Robert J. ;
Tripathi, Anupriya ;
Gibbons, Sean M. ;
Ackermann, Gail ;
Navas-Molina, Jose A. ;
Janssen, Stefan ;
Kopylova, Evguenia ;
Vazquez-Baeza, Yoshiki ;
Gonzalez, Antonio ;
Morton, James T. ;
Mirarab, Siavash ;
Xu, Zhenjiang Zech ;
Jiang, Lingjing ;
Haroon, Mohamed F. ;
Kanbar, Jad ;
Zhu, Qiyun ;
Song, Se Jin ;
Kosciolek, Tomasz ;
Bokulich, Nicholas A. ;
Lefler, Joshua ;
Brislawn, Colin J. ;
Humphrey, Gregory ;
Owens, Sarah M. ;
Hampton-Marcell, Jarrad ;
Berg-Lyons, Donna ;
McKenzie, Valerie ;
Fierer, Noah ;
Fuhrman, Jed A. ;
Clauset, Aaron ;
Stevens, Rick L. ;
Shade, Ashley ;
Pollard, Katherine S. ;
Goodwin, Kelly D. ;
Jansson, Janet K. ;
Gilbert, Jack A. ;
Knight, Rob ;
Rivera, Jose L. Agosto ;
Al-Moosawi, Lisa ;
Alverdy, John ;
Amato, Katherine R. ;
Andras, Jason ;
Angenent, Largus T. ;
Antonopoulos, Dionysios A. ;
Apprill, Amy .
NATURE, 2017, 551 (7681) :457-+
[9]  
Tong Maomeng, 2014, Curr Protoc Immunol, V107, DOI 10.1002/0471142735.im0741s107
[10]   Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators [J].
Wu, Cindy H. ;
Sercu, Bram ;
Van de Werfhorst, Laurie C. ;
Wong, Jakk ;
DeSantis, Todd Z. ;
Brodie, Eoin L. ;
Hazen, Terry C. ;
Holden, Patricia A. ;
Andersen, Gary L. .
PLOS ONE, 2010, 5 (06)