Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

被引:0
作者
Shukla, H. S. [1 ]
Tamsir, Mohammad [1 ]
Srivastava, Vineet K. [2 ]
Kumar, Jai [3 ]
机构
[1] DDU Gorakhpur Univ, Dept Math & Stat, Gorakhpur 273009, Uttar Pradesh, India
[2] ISRO Telemetry Tracking & Command Network ISTRAC, Bangalore 560058, Karnataka, India
[3] ISRO Satellite Ctr ISAC, Bangalore 560017, Karnataka, India
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2014年 / 103卷 / 01期
关键词
Cauchy-reaction diffusion equation; Caputo time Fractional derivatives; Mittag-Leffler function; Fractional reduced differential transform method; exact solution; NUMERICAL-SOLUTION; DECOMPOSITION METHOD;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of this article is to carry out an approximate analytical solution of the time fractional order Cauchy-reaction diffusion equation by using a semi analytical method referred as the fractional-order reduced differential transform method (FRDTM). The fractional derivative is illustrated in the Caputo sense. The FRDTM is very efficient and effective powerful mathematical tool for solving Wide range of real world physical problems by providing an exact or a closed approximate solution of any differential equation arising in engineering and allied sciences. Four test numerical examples are provided to validate and illustrate the efficiency of FRDTM.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Analytical study of time-fractional order Klein-Gordon equation
    Tamsir, Mohammad
    Srivastava, Vineet K.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (01) : 561 - 567
  • [2] Revisiting the approximate analytical solution of fractional-order gas dynamics equation
    Tamsir, Mohammad
    Srivastava, Vineet K.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) : 867 - 874
  • [3] A fractional system of Cauchy-reaction diffusion equations by adopting Robotnov function
    Kumar, Sunil
    Ghosh, Surath
    Jleli, Mohamed
    Araci, Serkan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 470 - 489
  • [4] NUMERICAL APPROACH TO THE TIME-FRACTIONAL REACTION-DIFFUSION EQUATION
    Qiu, Yu-Yang
    THERMAL SCIENCE, 2019, 23 (04): : 2245 - 2251
  • [5] Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 281 - 288
  • [6] Approximate analytical solution of two-dimensional space-time fractional diffusion equation
    Pandey, Prashant
    Kumar, Sachin
    Gomez, Francisco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7194 - 7207
  • [7] Exact solution of nonlinear time-fractional reaction-diffusion-convection equation via a new coupling method
    Khalouta, Ali
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 333 - 344
  • [8] Approximate Analytical Solution of Two-Dimensional Nonlinear Time-Fractional Damped Wave Equation in the Caputo Fractional Derivative Operator
    Deresse, Alemayehu Tamirie
    Mussa, Yesuf Obsie
    Gizaw, Ademe Kebede
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [9] Time-fractional diffusion of distributed order
    Mainardi, Francesco
    Mura, Antonio
    Pagnini, Gianni
    Gorenflo, Rudolf
    JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1267 - 1290
  • [10] The New Approximate Analytic Solution for Oxygen Diffusion Problem with Time-Fractional Derivative
    Gulkac, Vildan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016