Stabilization of the resistive wall mode instability by trapped energetic particles

被引:21
|
作者
Hao, G. Z. [1 ]
Liu, Y. Q. [2 ]
Wang, A. K. [1 ]
Jiang, H. B. [1 ]
Lu, Gaimin [1 ]
He, H. D. [1 ]
Qiu, X. M. [1 ]
机构
[1] SW Inst Phys, Chengdu 610041, Peoples R China
[2] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
MAGNETOHYDRODYNAMIC STABILITY; KINK MODES; SHEAR; TOKAMAKS; FEEDBACK;
D O I
10.1063/1.3569854
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theoretical model for investigating the effect of the trapped energetic particles (EPs) on the resistive wall mode (RWM) instability is proposed. The results demonstrate that the trapped EPs have a dramatic stabilizing effect on the RWM because of resonant interaction between the mode and the magnetic precession drift motion of the trapped EPs. The results also show that the effect of the trapped EPs depends on the wall position. In addition, the stabilizing effect becomes stronger when the plasma rotation is taken into account. For sufficiently fast plasma rotation, the trapped EPs can lead to the complete stabilization of the RWM. Furthermore, the trapped EPs can induce a finite real frequency of the RWM in the absence of plasma rotation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3569854]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability
    Shiraishi, J.
    Aiba, N.
    Miyato, N.
    Yagi, M.
    NUCLEAR FUSION, 2014, 54 (08)
  • [32] Analysis of resistive wall mode LQG control in NSTX with mode rotation
    Katsuro-Hopkins, Oksana
    Sabbagh, S. A.
    Bialek, J. M.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 309 - 314
  • [33] Effect of Collisionality on Kinetic Stability of the Resistive Wall Mode
    Berkery, J. W.
    Sabbagh, S. A.
    Betti, R.
    Bell, R. E.
    Gerhardt, S. P.
    LeBlanc, B. P.
    Yuh, H.
    PHYSICAL REVIEW LETTERS, 2011, 106 (07)
  • [34] Active control of the resistive wall mode with power saturation
    Li, Li
    Liu, Yue
    Liu, Yueqiang
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [35] Effects of control voltage saturation and sensor noise on the resistive wall mode feedback in ITER
    Wang, S.
    Liu, Y. Q.
    Zheng, G. Y.
    Song, X. M.
    Hao, G. Z.
    Xia, G. L.
    Li, L.
    Li, B.
    Zhang, N.
    Dong, G. Q.
    Bai, X.
    NUCLEAR FUSION, 2019, 59 (09)
  • [36] Excitation of Flow-Stabilized Resistive Wall Mode by Coupling with Stable Eigenmodes in Tokamaks
    Aiba, Nobuyuki
    Hirota, Makoto
    PHYSICAL REVIEW LETTERS, 2015, 114 (06)
  • [37] A rigorous approach to study kinetic and 3D effects on resistive wall mode
    Liu, Yueqiang
    Villone, F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (11)
  • [38] Kinetic damping of resistive wall mode in reversed field pinch
    Wang, Z. R.
    Guo, S. C.
    Liu, Y. Q.
    Chu, M. S.
    NUCLEAR FUSION, 2012, 52 (06)
  • [39] The theory of kinetic effects on resistive wall mode stability in tokamaks
    Berkery, J. W.
    Betti, R.
    Liu, Y. Q.
    Sabbagh, S. A.
    PHYSICS OF PLASMAS, 2023, 30 (12)
  • [40] Resistive wall mode active control physics design for KSTAR
    Park, Y. S.
    Sabbagh, S. A.
    Bak, J. G.
    Bialek, J. M.
    Berkery, J. W.
    Lee, S. G.
    Oh, Y. K.
    PHYSICS OF PLASMAS, 2014, 21 (01)