Stabilization of the resistive wall mode instability by trapped energetic particles

被引:21
|
作者
Hao, G. Z. [1 ]
Liu, Y. Q. [2 ]
Wang, A. K. [1 ]
Jiang, H. B. [1 ]
Lu, Gaimin [1 ]
He, H. D. [1 ]
Qiu, X. M. [1 ]
机构
[1] SW Inst Phys, Chengdu 610041, Peoples R China
[2] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
MAGNETOHYDRODYNAMIC STABILITY; KINK MODES; SHEAR; TOKAMAKS; FEEDBACK;
D O I
10.1063/1.3569854
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theoretical model for investigating the effect of the trapped energetic particles (EPs) on the resistive wall mode (RWM) instability is proposed. The results demonstrate that the trapped EPs have a dramatic stabilizing effect on the RWM because of resonant interaction between the mode and the magnetic precession drift motion of the trapped EPs. The results also show that the effect of the trapped EPs depends on the wall position. In addition, the stabilizing effect becomes stronger when the plasma rotation is taken into account. For sufficiently fast plasma rotation, the trapped EPs can lead to the complete stabilization of the RWM. Furthermore, the trapped EPs can induce a finite real frequency of the RWM in the absence of plasma rotation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3569854]
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Analytical modelling of resistive wall mode stabilization by rotation in toroidal tokamak plasmas
    Ham, C. J.
    Gimblett, C. G.
    Hastie, R. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (02)
  • [22] Magnetohydrodynamic instability excited by interplay between a resistive wall mode and stable ideal magnetohydrodynamic modes in rotating tokamak plasmas
    Aiba, N.
    Hirota, M.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [23] Progress in physics and control of the resistive wall mode in advanced tokamaks
    Liu, Yueqiang
    Chapman, I. T.
    Chu, M. S.
    Reimerdes, H.
    Villone, F.
    Albanese, R.
    Ambrosino, G.
    Garofalo, A. M.
    Gimblett, C. G.
    Hastie, R. J.
    Hender, T. C.
    Jackson, G. L.
    La Haye, R. J.
    Okabayashi, M.
    Pironti, A.
    Portone, A.
    Rubinacci, G.
    Strait, E. J.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [24] Impact of hot particles on resistive wall mode stability in rotating high-beta plasmas
    Shiraishi, J.
    Miyato, N.
    Matsunaga, G.
    Toma, M.
    Honda, M.
    Suzuki, T.
    Yoshida, M.
    Hayashi, N.
    Ide, S.
    NUCLEAR FUSION, 2017, 57 (12)
  • [25] Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width
    Liu, Yueqiang
    Chapman, I. T.
    Graves, J. P.
    Hao, G. Z.
    Wang, Z. R.
    Menard, J. E.
    Okabayashi, M.
    Strait, E. J.
    Turnbull, A.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [26] Dynamic evolution of the resistive wall mode with finite wall thickness
    Chen, L. X.
    Ma, Z. W.
    PHYSICA SCRIPTA, 2011, 84 (02)
  • [27] Resistive wall stabilization of rotating edge modes in tokamaks
    Pustovitov, V. D.
    Yanovskiy, V. V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (03)
  • [28] Study on the Resistive Wall Instability Driven by Plasma Flow
    Li Li
    Liu Yue
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [29] Destabillization of resistive plasma resistive wall mode by anisotropic thermal transport
    Bai, Xue
    Liu, Yueqiang
    Gao, Zhe
    Xia, Guoliang
    Yang, Sanxiang
    PHYSICS OF PLASMAS, 2018, 25 (09)
  • [30] Toroidal modeling of interaction between resistive wall mode and plasma flow
    Liu, Yueqiang
    Sun, Youwen
    PHYSICS OF PLASMAS, 2013, 20 (02)