Existence of weak solutions for compressible Navier-Stokes equations with entropy transport

被引:31
|
作者
Maltese, David [1 ]
Michalek, Martin [2 ,4 ]
Mucha, Piotr B. [3 ]
Novotny, Antonin [1 ]
Pokorny, Milan [2 ]
Zatorska, Ewelina [5 ]
机构
[1] Inst Math Toulon, EA 2134, BP20132, F-83957 La Garde, France
[2] Charles Univ Prague, Fac Math & Phys, Ke Karlovu 3, CR-12116 Prague 2, Czech Republic
[3] Univ Warsaw, Inst Appl Math & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[4] Acad Sci Czech Republic, Inst Math, Zitna 25, Prague 11000, Czech Republic
[5] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
关键词
FLUID; FLOWS;
D O I
10.1016/j.jde.2016.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the compressible Navier-Stokes system with variable entropy. The pressure is a nonlinear function of the density and the entropy/potential temperature which, unlike in the Navier-Stokes Fourier system, satisfies only the transport equation. We provide existence results within three alternative weak formulations of the corresponding classical problem. Our constructions hold for the optimal range of the adiabatic coefficients from the point of view of the nowadays existence theory. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4448 / 4485
页数:38
相关论文
共 50 条