Learning-induced autonomy of sensorimotor systems

被引:403
作者
Bassett, Danielle S. [1 ,2 ]
Yang, Muzhi [1 ,3 ]
Wymbs, Nicholas F. [4 ,5 ,6 ]
Grafton, Scott T. [4 ,5 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[3] Univ Penn, Appl Math & Computat Sci Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Brain Imaging Ctr, Santa Barbara, CA 93106 USA
[6] Johns Hopkins Med Inst, Dept Phys Med & Rehabil, Human Brain Physiol & Stimulat Lab, Baltimore, MD 21205 USA
基金
美国国家科学基金会;
关键词
HUMAN BRAIN NETWORKS; FUNCTIONAL CONNECTIVITY; RESTING-STATE; COGNITIVE CONTROL; TASK; RECONFIGURATION; MECHANISMS; PRINCIPLES; WAVELETS; ANATOMY;
D O I
10.1038/nn.3993
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Distributed networks of brain areas interact with one another in a time-varying fashion to enable complex cognitive and sensorimotor functions. Here we used new network-analysis algorithms to test the recruitment and integration of large-scale functional neural circuitry during learning. Using functional magnetic resonance imaging data acquired from healthy human participants, we investigated changes in the architecture of functional connectivity patterns that promote learning from initial training through mastery of a simple motor skill. Our results show that learning induces an autonomy of sensorimotor systems and that the release of cognitive control hubs in frontal and cingulate cortices predicts individual differences in the rate of learning on other days of practice. Our general statistical approach is applicable across other cognitive domains and provides a key to understanding time-resolved interactions between distributed neural circuits that enable task performance.
引用
收藏
页码:744 / +
页数:11
相关论文
共 86 条
  • [1] A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    Achard, S
    Salvador, R
    Whitcher, B
    Suckling, J
    Bullmore, ET
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (01) : 63 - 72
  • [2] Fractal connectivity of long-memory networks
    Achard, Sophie
    Bassett, Danielle S.
    Meyer-Lindenberg, Andreas
    Bullmore, Edward T.
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [3] Efficiency and cost of economical brain functional networks
    Achard, Sophie
    Bullmore, Edward T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) : 174 - 183
  • [4] A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits
    Ajemian, Robert
    D'Ausilio, Alessandro
    Moorman, Helene
    Bizzi, Emilio
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (52) : E5078 - E5087
  • [5] [Anonymous], COGNITIVE NEUROSCIEN
  • [6] [Anonymous], 2016, Networks of the Brain
  • [7] [Anonymous], BRAIN ANATOMY SMALL
  • [8] Cross-linked structure of network evolution
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Porter, Mason A.
    Mucha, Peter J.
    Grafton, Scott T.
    [J]. CHAOS, 2014, 24 (01) : 013112
  • [9] Task-Based Core-Periphery Organization of Human Brain Dynamics
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Rombach, M. Puck
    Porter, Mason A.
    Mucha, Peter J.
    Grafton, Scott T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
  • [10] Robust detection of dynamic community structure in networks
    Bassett, Danielle S.
    Porter, Mason A.
    Wymbs, Nicholas F.
    Grafton, Scott T.
    Carlson, Jean M.
    Mucha, Peter J.
    [J]. CHAOS, 2013, 23 (01)