The Arctic Temperature Response to Global and Regional Anthropogenic Sulfate Aerosols

被引:1
作者
Asutosh, Acharya [1 ,2 ]
Fadnavis, Suvarna [3 ]
Nuncio, M. [1 ]
Mueller, Rolf [4 ]
Tripathy, Sarat C. [1 ]
机构
[1] Minist Earth Sci, Natl Ctr Polar & Ocean Res NCPOR, Vasco Da Gama, India
[2] Indian Inst Technol, Sch Earth Ocean & Climate Sci, Bhubaneswar, Odisha, India
[3] Minist Earth Sci, Indian Inst Trop Meteorol, CCCR, Pune, Maharashtra, India
[4] Forschungszentrum Julich, IEK 7, Julich, Germany
关键词
arctic temperature; transport of sulfate aerosols; cloud radiative forcing; climate change; arctic summer cooling and winter warming; SEA-ICE; CLOUDS; AMPLIFICATION; EMISSIONS; TRANSPORT; MODEL; ATTRIBUTION; ATMOSPHERE; RADIATION; SURFACE;
D O I
10.3389/fenvs.2021.766538
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The mechanisms behind Arctic warming and associated climate changes are difficult to discern. Also, the complex local processes and feedbacks like aerosol-cloud-climate interactions are yet to be quantified. Here, using the Community Earth System Model (CAM5) experiments, with emission enhancement of anthropogenic sulfate 1) five-fold globally, 2) ten-times over Asia, and 3) ten-times over Europe we show that regional emissions of sulfate aerosols alter seasonal warming over the Arctic, i.e., colder summer and warmer winter. European emissions play a dominant role in cooling during the summer season (0.7 K), while Asian emissions dominate the warming during the winter season (maximum similar to 0.6 K) in the Arctic surface. The cooling/warming is associated with a negative/positive cloud radiative forcing. During the summer season increase in low-mid level clouds, induced by sulfate emissions, favours the solar dimming effect that reduces the downwelling radiation to the surface and thus leads to surface cooling. Warmer winters are associated with enhanced high-level clouds that induce a positive radiative forcing at the top of the atmosphere. This study points to the importance of international strategies being implemented to control sulfate emissions to combat air pollution. Such strategies will also affect the Arctic cooling/warming associated with a cloud radiative forcing caused by sulfate emission change.
引用
收藏
页数:13
相关论文
共 70 条
[1]   Global and regional trends of atmospheric sulfur [J].
Aas, Wenche ;
Mortier, Augustin ;
Bowersox, Van ;
Cherian, Ribu ;
Faluvegi, Greg ;
Fagerli, Hilde ;
Hand, Jenny ;
Klimont, Zbigniew ;
Galy-Lacaux, Corinne ;
Lehmann, Christopher M. B. ;
Myhre, Cathrine Lund ;
Myhre, Gunnar ;
Olivie, Dirk ;
Sato, Keiichi ;
Quaas, Johannes ;
Rao, P. S. P. ;
Schulz, Michael ;
Shindell, Drew ;
Skeie, Ragnhild B. ;
Stein, Ariel ;
Takemura, Toshihiko ;
Tsyro, Svetlana ;
Vet, Robert ;
Xu, Xiaobin .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   The Role of Sulfate Aerosol in the Formation of Cloudiness over the Sea [J].
Aloyan, A. E. ;
Yermakov, A. N. ;
Arutyunyan, V. O. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2016, 52 (04) :353-364
[3]   Fast versus slow response in climate change: implications for the global hydrological cycle [J].
Bala, Govindasamy ;
Caldeira, K. ;
Nemani, R. .
CLIMATE DYNAMICS, 2010, 35 (2-3) :423-434
[4]   July 2012 Greenland melt extent enhanced by low-level liquid clouds [J].
Bennartz, R. ;
Shupe, M. D. ;
Turner, D. D. ;
Walden, V. P. ;
Steffen, K. ;
Cox, C. J. ;
Kulie, M. S. ;
Miller, N. B. ;
Pettersen, C. .
NATURE, 2013, 496 (7443) :83-86
[5]   Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption [J].
Breider, Thomas J. ;
Mickley, Loretta J. ;
Jacob, Daniel J. ;
Wang, Qiaoqiao ;
Fisher, Jenny A. ;
Chang, Rachel. Y. -W. ;
Alexander, Becky .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (07) :4107-4124
[6]   Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project [J].
Brock, C. A. ;
Cozic, J. ;
Bahreini, R. ;
Froyd, K. D. ;
Middlebrook, A. M. ;
McComiskey, A. ;
Brioude, J. ;
Cooper, O. R. ;
Stohl, A. ;
Aikin, K. C. ;
de Gouw, J. A. ;
Fahey, D. W. ;
Ferrare, R. A. ;
Gao, R-S. ;
Gore, W. ;
Holloway, J. S. ;
Huebler, G. ;
Jefferson, A. ;
Lack, D. A. ;
Lance, S. ;
Moore, R. H. ;
Murphy, D. M. ;
Nenes, A. ;
Novelli, P. C. ;
Nowak, J. B. ;
Ogren, J. A. ;
Peischl, J. ;
Pierce, R. B. ;
Pilewskie, P. ;
Quinn, P. K. ;
Ryerson, T. B. ;
Schmidt, K. S. ;
Schwarz, J. P. ;
Sodemann, H. ;
Spackman, J. R. ;
Stark, H. ;
Thomson, D. S. ;
Thornberry, T. ;
Veres, P. ;
Watts, L. A. ;
Warneke, C. ;
Wollny, A. G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (06) :2423-2453
[7]   Observed fingerprint of a weakening Atlantic Ocean overturning circulation [J].
Caesar, L. ;
Rahmstorf, S. ;
Robinson, A. ;
Feulner, G. ;
Saba, V. .
NATURE, 2018, 556 (7700) :191-+
[8]  
Cairo F, 2020, SPR POLAR SCI, P415, DOI 10.1007/978-3-030-33566-3_7
[9]   Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP [J].
Cesana, G. ;
Kay, J. E. ;
Chepfer, H. ;
English, J. M. ;
de Boer, G. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[10]  
Cohen J.X., 2018, US CLIVAR Report 2018-1, P1, DOI [10.5065/D6TH8KGW.CONTRIBUTORS, DOI 10.5065/D6TH8KGW.CONTRIBUTORS]