Clifford Circuit Optimization with Templates and Symbolic Pauli Gates

被引:13
作者
Bravyi, Sergey [1 ]
Shaydulin, Ruslan [2 ]
Hui, Shaohan [3 ]
Maslov, Dmitri [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[3] JPMorgan Chase & Co, New York, NY 10017 USA
来源
QUANTUM | 2021年 / 5卷
关键词
D O I
10.22331/q-2021-11-16-580
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Clifford group is a finite subgroup of the unitary group generated by the Hadamard, the CNOT, and the Phase gates. This group plays a prominent role in quantum error correction, randomized benchmarking protocols, and the study of entanglement. Here we consider the problem of finding a short quantum circuit implementing a given Clifford group element. Our methods aim to minimize the entangling gate count assuming all-to-all qubit connectivity. First, we consider circuit optimization based on template matching and design Clifford-specific templates that leverage the ability to factor out Pauli and SWAP gates. Second, we introduce a symbolic peephole optimization method. It works by projecting the full circuit onto a small subset of qubits and optimally recompiling the projected subcircuit via dynamic programming. CNOT gates coupling the chosen subset of qubits with the remaining qubits are expressed using symbolic Pauli gates. Software implementation of these methods finds circuits that are only 0.2% away from optimal for 6 qubits and reduces the two-qubit gate count in circuits with up to 64 qubits by 64.7% on average, compared to the Aaronson-Gottesman canonical form [3].
引用
收藏
页数:16
相关论文
共 30 条
  • [1] Improved simulation of stabilizer circuits
    Aaronson, S
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 2004, 70 (05): : 052328 - 1
  • [2] Shadow Tomography of Quantum States
    Aaronson, Scott
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 325 - 338
  • [3] [Anonymous], 2010, PHYS REV A, DOI DOI 10.1103/PHYSREVA.82.012315
  • [4] [Anonymous], 2010, QUANTUM COMPUTATION, DOI [DOI 10.1017/CBO9780511976667, 10.1017/CBO9780511976667.]
  • [5] [Anonymous], [71] IBM. "Why Mashups Matter". lt
  • [6] http://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdfgt
  • [7] . Accessed June 2009.
  • [8] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [9] Universal quantum computation with ideal Clifford gates and noisy ancillas
    Bravyi, S
    Kitaev, A
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [10] Hadamard-Free Circuits Expose the Structure of the Clifford Group
    Bravyi, Sergey
    Maslov, Dmitri
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4546 - 4563