Broadband optical ultrasound sensor with a unique open-cavity structure

被引:18
作者
Chow, Cohn M. [2 ]
Zhou, Yun [3 ]
Guo, Yunbo [2 ]
Norris, Theodore B. [2 ]
Wang, Xueding [4 ]
Deng, Cheri X. [3 ]
Ye, Jing Yong [1 ]
机构
[1] Univ Texas San Antonio, Dept Biomed Engn, San Antonio, TX 78249 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
optical ultrasound sensor; ultrasound imaging; photoacoustic imaging; hydrophone; PHOTONIC CRYSTAL-STRUCTURE; TOTAL-INTERNAL-REFLECTION; MEMBRANE HYDROPHONE; FREQUENCY-RESPONSE; INTERFEROMETER; MHZ;
D O I
10.1117/1.3528014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention. One of the most studied approaches is based on a Fabry-Perot interferometer, consisting of an optical cavity sandwiched between two mirrors. This technique offers promising sensitivity and bandwidth, and a potential alternative to piezoelectric polyvinylidene fluoride (PVDF) hydrophones. We propose an innovative optical ultrasound sensor using only a single mirror in a total-internal-reflection configuration. Besides retaining the advantages of Fabry-Perot interferometer-based ultrasound sensors, this unique design provides a bandwidth of at least 160 MHz, a potential decrease in fabrication cost, and an increase in signal fidelity. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3528014]
引用
收藏
页数:6
相关论文
共 23 条
  • [1] Optoacoustic imaging using thin polymer etalon[J]. Ashkenazi, S;Hou, Y;Buma, T;O'Donnell, M. APPLIED PHYSICS LETTERS, 2005(13)
  • [2] Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer[J]. Beard, PC;Mills, TN. ELECTRONICS LETTERS, 1997(09)
  • [3] Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection[J]. Beard, PC;Pérennès, F;Mills, TN. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999(06)
  • [4] BEARD PC, 1998, P IEEE ULTR S, V1882, P1881
  • [5] The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor[J]. Cox, Benjamin T.;Beard, Paul C. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007(02)
  • [6] Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation[J]. Cox, BT;Zhang, EZ;Laufer, JG;Beard, PC. AMUM 2004: ADVANCED METROLOGY FOR ULTRASOUND IN MEDICINE 2004, 2004
  • [7] Sensitive molecular binding assay using a photonic crystal structure in total internal reflection[J]. Guo, Yunbo;Divin, Charles;Myc, Andrzej;Terry, Fred L., Jr.;Baker, James R., Jr.;Norris, Theodore B.;Ye, Jing Yong. OPTICS EXPRESS, 2008(16)
  • [8] Atherosclerotic plaque characterization with optoacoustic imaging[J]. Henrichs, PM;Meador, JW;Fuqua, JM;Oraevsky, AA. PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2005, 2005
  • [9] Micro fabrication of thick and bulk PZT materials for piezoelectric actuator[J]. Lee, SH;Maeda, R;Esashi, M. NANO- AND MICROTECHNOLOGY: MATERIALS, PROCESSES, PACKAGING, AND SYSTEMS, 2002
  • [10] High-frequency membrane hydrophone[J]. Lum, P;Greenstein, M;Grossman, C;Szabo, TL. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1996(04)