Broadband optical ultrasound sensor with a unique open-cavity structure

被引:18
作者
Chow, Cohn M. [2 ]
Zhou, Yun [3 ]
Guo, Yunbo [2 ]
Norris, Theodore B. [2 ]
Wang, Xueding [4 ]
Deng, Cheri X. [3 ]
Ye, Jing Yong [1 ]
机构
[1] Univ Texas San Antonio, Dept Biomed Engn, San Antonio, TX 78249 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
optical ultrasound sensor; ultrasound imaging; photoacoustic imaging; hydrophone; PHOTONIC CRYSTAL-STRUCTURE; TOTAL-INTERNAL-REFLECTION; MEMBRANE HYDROPHONE; FREQUENCY-RESPONSE; INTERFEROMETER; MHZ;
D O I
10.1117/1.3528014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention. One of the most studied approaches is based on a Fabry-Perot interferometer, consisting of an optical cavity sandwiched between two mirrors. This technique offers promising sensitivity and bandwidth, and a potential alternative to piezoelectric polyvinylidene fluoride (PVDF) hydrophones. We propose an innovative optical ultrasound sensor using only a single mirror in a total-internal-reflection configuration. Besides retaining the advantages of Fabry-Perot interferometer-based ultrasound sensors, this unique design provides a bandwidth of at least 160 MHz, a potential decrease in fabrication cost, and an increase in signal fidelity. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3528014]
引用
收藏
页数:6
相关论文
共 23 条
[1]   Optoacoustic imaging using thin polymer etalon [J].
Ashkenazi, S ;
Hou, Y ;
Buma, T ;
O'Donnell, M .
APPLIED PHYSICS LETTERS, 2005, 86 (13) :1-3
[2]   Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer [J].
Beard, PC ;
Mills, TN .
ELECTRONICS LETTERS, 1997, 33 (09) :801-803
[3]   Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection [J].
Beard, PC ;
Pérennès, F ;
Mills, TN .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (06) :1575-1582
[4]  
BEARD PC, 1998, P IEEE ULTR S, V1882, P1881
[5]   The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor [J].
Cox, Benjamin T. ;
Beard, Paul C. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007, 54 (02) :394-404
[6]   Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation [J].
Cox, BT ;
Zhang, EZ ;
Laufer, JG ;
Beard, PC .
AMUM 2004: ADVANCED METROLOGY FOR ULTRASOUND IN MEDICINE 2004, 2004, 1 :32-37
[7]   Sensitive molecular binding assay using a photonic crystal structure in total internal reflection [J].
Guo, Yunbo ;
Divin, Charles ;
Myc, Andrzej ;
Terry, Fred L., Jr. ;
Baker, James R., Jr. ;
Norris, Theodore B. ;
Ye, Jing Yong .
OPTICS EXPRESS, 2008, 16 (16) :11741-11749
[8]   Atherosclerotic plaque characterization with optoacoustic imaging [J].
Henrichs, PM ;
Meador, JW ;
Fuqua, JM ;
Oraevsky, AA .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2005, 2005, 5697 :217-223
[9]   Micro fabrication of thick and bulk PZT materials for piezoelectric actuator [J].
Lee, SH ;
Maeda, R ;
Esashi, M .
NANO- AND MICROTECHNOLOGY: MATERIALS, PROCESSES, PACKAGING, AND SYSTEMS, 2002, 4936 :365-372
[10]   High-frequency membrane hydrophone [J].
Lum, P ;
Greenstein, M ;
Grossman, C ;
Szabo, TL .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1996, 43 (04) :536-544