Flow equations for Yang-Mills theories in general axial gauges

被引:98
作者
Litim, DF
Pawlowski, JM
机构
[1] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, IFAE, E-08028 Barcelona, Spain
[3] Dublin Inst Adv Studies, Dublin 4, Ireland
关键词
D O I
10.1016/S0370-2693(98)00761-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a formulation of non-Abelian gauge theories in general axial gauges using a Wilsonian (or 'Exact') Renormalisation Group. No 'spurious' propagator divergencies an encountered in contrast to standard perturbation theory. Modified Ward identities, compatible with the flow equation, ensure gauge invariance of physical Green functions. The axial gauge nA = 0 is shown to be a fixed point under the now equation. Possible non-perturbative approximation schemes and further applications are outlined. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 64 条
[21]  
DOKSHITZER YL, 1980, PHYS REP, V58, P270, DOI 10.1016/0370-1573(80)90043-5
[22]   FLOW EQUATIONS AND BRS INVARIANCE FOR YANG-MILLS THEORIES [J].
ELLWANGER, U .
PHYSICS LETTERS B, 1994, 335 (3-4) :364-370
[23]   Flow equations for the relevant part of the pure Yang-Mills action [J].
Ellwanger, U ;
Hirsch, M ;
Weber, A .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 69 (04) :687-697
[24]  
ELLWANGER U, HEPPH9606468
[25]   Abelian Ward identity from the background field dependence of the effective action [J].
Freire, F ;
Wetterich, C .
PHYSICS LETTERS B, 1996, 380 (3-4) :337-340
[26]   EXTENDED BRS-SYMMETRY AND THE AXIAL GAUGE IN PURE YANG-MILLS THEORIES [J].
GAIGG, P ;
PIGUET, O ;
REBHAN, A ;
SCHWEDA, M .
PHYSICS LETTERS B, 1986, 175 (01) :53-56
[27]   QUANTIZATION OF NON-ABELIAN GAUGE THEORIES [J].
GRIBOV, VN .
NUCLEAR PHYSICS B, 1978, 139 (1-2) :1-19
[28]  
HAND BJ, HEPTH9511140
[29]   WILSON LOOP EXPONENTIATION AND TEMPORAL GAUGES [J].
HUFFEL, H ;
LANDSHOFF, PV ;
TAYLOR, JC .
PHYSICS LETTERS B, 1989, 217 (1-2) :147-150
[30]   A RENORMALIZATION-GROUP PROOF OF PERTURBATIVE RENORMALIZABILITY [J].
HURD, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (01) :153-168