Spectral Multipliers for the Kohn Laplacian on Forms on the Sphere in Cn

被引:0
作者
Casarino, Valentina [1 ]
Cowling, Michael G. [2 ]
Martini, Alessio [3 ]
Sikora, Adam [4 ]
机构
[1] Univ Padua, Dipartimento Tecn & Gest Sistemi Ind, Stradella San Nicola 3, I-36100 Vicenza, Italy
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[4] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Cauchy-Riemann complex; Kohn Laplacian; Multiplier theorem; HYPOELLIPTIC DIFFERENTIAL-OPERATORS; RIESZ MEANS; EIGENFUNCTION-EXPANSIONS; HEISENBERG-GROUP; NILPOTENT GROUPS; WAVE-EQUATION; SUBLAPLACIAN; COMPLEX; BOUNDS;
D O I
10.1007/s12220-017-9806-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The unit sphere S in C-n is equipped with the tangential Cauchy-Riemann complex and the associated Laplacian square(b). We prove a Hormander spectral multiplier theorem square(b) for with critical index n-1/2, that is, half the topological dimension of S. Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on S.
引用
收藏
页码:3302 / 3338
页数:37
相关论文
共 37 条