Counting points of bounded relative height

被引:1
作者
De La Maza, AC [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
关键词
D O I
10.1112/S0025579300014856
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L/K be an extension of number fields and let e O-L/K(*) be the subgroup of the unit group O-L(*) consisting of the elements that are roots of L units of O-K(*). Denote by N(L/K, B) the number of points in P-1(L)/(O)(L/K)(*) with relative height in the sense of Berge-Martinet at most B. Here P-1(L) stands for the one-dimensional projective space over L. In this paper is proved the formula N(L/K, B) = CB2 + O(B2-1/[L:Q}), where C is a constant given in terms of invariants of L/K such as the regulators, class number and discriminant.
引用
收藏
页码:125 / 152
页数:28
相关论文
共 8 条
[1]  
Apostol TM., 1998, INTRO ANAL NUMBER TH
[2]  
BERGE AM, 1989, ACTA ARITH, V54, P156
[3]  
BERGE AM, 1987, SEM THEORIE NOMBRES, V11
[4]  
BOREVITCH ZI, 1967, THEORIE NOMBRES
[5]  
Hardy G.H., 1995, An Introduction to the Theory of Numbers, V5th ed.
[6]  
Lang S., 2013, Fundamentals of Diophantine Geometry
[7]  
LANG S, 1970, ALGEBRAIC NUMBER THE
[8]  
SCHANUEL SH, 1979, B SOC MATH FR, V107, P433