The inverse problem for the local geodesic ray transform

被引:95
作者
Uhlmann, Gunther [1 ,2 ,3 ]
Vasy, Andras [4 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Helsinki, Dept Math, Helsinki, Finland
[3] HKUST, HKUST Jockey Club Inst Adv Study, Kowloon, Hong Kong, Peoples R China
[4] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
TENSOR-FIELDS;
D O I
10.1007/s00222-015-0631-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under a convexity assumption on the boundary we solve a local inverse problem, namely we show that the geodesic X-ray transform can be inverted locally in a stable manner; one even has a reconstruction formula. We also show that under an assumption on the existence of a global foliation by strictly convex hypersurfaces the geodesic X-ray transform is globally injective. In addition we prove stability estimates and propose a layer stripping type algorithm for reconstruction.
引用
收藏
页码:83 / 120
页数:38
相关论文
共 24 条
[1]  
[Anonymous], 1994, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces
[2]  
Bernstein I.N., METHODS ALGORITHMS I, V13, P50
[3]  
Boman J, 2011, CONTEMP MATH, V559, P39
[4]  
Eberlein P., 1973, J. Differential Geometry, V8, P437
[5]   The X-ray transform for a generic family of curves and weights [J].
Frigyik, Bela ;
Stefanov, Plamen ;
Uhlmann, Gunther .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :89-108
[6]   CINFINITY CONVEX FUNCTIONS AND MANIFOLDS OF POSITIVE CURVATURE [J].
GREENE, RE ;
WU, H .
ACTA MATHEMATICA, 1976, 137 (3-4) :209-245
[7]  
Helgason S, 2011, INTEGRAL GEOMETRY AND RADON TRANSFORMS, P1, DOI 10.1007/978-1-4419-6055-9
[8]  
Herglotz G., 1905, Zeitschr. fr Math. Phys, V52, P275
[9]  
Holman S., ARXIV150206545
[10]  
Hormander L., 1983, ANAL LINEAR PARTIAL