Functional variance estimation using penalized splines with principal component analysis

被引:9
|
作者
Kauermann, Goeran [1 ]
Wegener, Michael [2 ]
机构
[1] Univ Bielefeld, Dept Econ, Ctr Stat, D-33501 Bielefeld, Germany
[2] DEKA Investment GmbH, D-60325 Frankfurt, Germany
关键词
Functional data analysis; Principal components; Penalized splines; Mixed models; REGRESSION-ANALYSIS; TERM STRUCTURE; MODELS;
D O I
10.1007/s11222-009-9156-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In many fields of empirical research one is faced with observations arising from a functional process. If so, classical multivariate methods are often not feasible or appropriate to explore the data at hand and functional data analysis is prevailing. In this paper we present a method for joint modeling of mean and variance in longitudinal data using penalized splines. Unlike previous approaches we model both components simultaneously via rich spline bases. Estimation as well as smoothing parameter selection is carried out using a mixed model framework. The resulting smooth covariance structures are then used to perform principal component analysis. We illustrate our approach by several simulations and an application to financial interest data.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 50 条
  • [41] Unfold Principal Component Analysis and Functional Unfold Principal Component Analysis for Online Plant Stress Detection
    Baert, A.
    Villez, K.
    Steppe, K.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 195 - 201
  • [42] Spectroscopic ellipsometry data analysis using penalized splines representation for the dielectric function
    Likhachev, D., V
    THIN SOLID FILMS, 2019, 669 : 174 - 180
  • [43] Phenotyping Apathy in Individuals With Alzheimer Disease Using Functional Principal Component Analysis
    Zeitzer, Jamie M.
    David, Renaud
    Friedman, Leah
    Mulin, Emmanuel
    Garcia, Rene
    Wang, Jia
    Yesavage, Jerome A.
    Robert, Philippe H.
    Shannon, William
    AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2013, 21 (04) : 391 - 397
  • [44] Solar irradiation estimation by monthly principal component analysis
    Sen, Zekai
    Cebeci, Suekrue Murat
    ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (11) : 3129 - 3134
  • [45] Change Point Detection Using Penalized Multidegree Splines
    Lee, Eun-Ji
    Jhong, Jae-Hwan
    AXIOMS, 2021, 10 (04)
  • [46] SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS
    Hu, Xiaoyu
    Yao, Fang
    STATISTICA SINICA, 2022, 32 : 1939 - 1960
  • [47] S-Estimators for Functional Principal Component Analysis
    Boente, Graciela
    Salibian-Barrera, Matias
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1100 - 1111
  • [48] Variable-Domain Functional Principal Component Analysis
    Johns, Jordan T.
    Crainiceanu, Ciprian
    Zipunnikov, Vadim
    Gellar, Jonathan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (04) : 993 - 1006
  • [49] Principal component analysis of multivariate spatial functional data
    Si-ahmed, Idris
    Hamdad, Leila
    Agonkoui, Christelle Judith
    Kande, Yoba
    Dabo-Niang, Sophie
    BIG DATA RESEARCH, 2025, 39
  • [50] Functional classwise principal component analysis: a classification framework for functional data analysis
    Avishek Chatterjee
    Satyaki Mazumder
    Koel Das
    Data Mining and Knowledge Discovery, 2023, 37 : 552 - 594